Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 63-77
Voir la notice de l'article provenant de la source Math-Net.Ru
We revisit the non-commutative Hodge-to-de Rham degeneration theorem of the first author and present its proof in a somewhat streamlined and improved form that explicitly uses spectral algebraic geometry. We also try to explain why topology is essential to the proof.
@article{TM_2019_307_a2,
author = {D. B. Kaledin and A. A. Konovalov and K. O. Magidson},
title = {Spectral {Algebras} and {Non-commutative} {Hodge-to-de} {Rham} {Degeneration}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {63--77},
publisher = {mathdoc},
volume = {307},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a2/}
}
TY - JOUR AU - D. B. Kaledin AU - A. A. Konovalov AU - K. O. Magidson TI - Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 63 EP - 77 VL - 307 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_307_a2/ LA - ru ID - TM_2019_307_a2 ER -
%0 Journal Article %A D. B. Kaledin %A A. A. Konovalov %A K. O. Magidson %T Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 63-77 %V 307 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_307_a2/ %G ru %F TM_2019_307_a2
D. B. Kaledin; A. A. Konovalov; K. O. Magidson. Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 63-77. http://geodesic.mathdoc.fr/item/TM_2019_307_a2/