Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_307_a15, author = {Nikolai A. Tyurin}, title = {Monotonic {Lagrangian} {Tori} of {Standard} and {Nonstandard} {Types} in {Toric} and {Pseudotoric} {Fano} {Varieties}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {291--305}, publisher = {mathdoc}, volume = {307}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a15/} }
TY - JOUR AU - Nikolai A. Tyurin TI - Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 291 EP - 305 VL - 307 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_307_a15/ LA - ru ID - TM_2019_307_a15 ER -
%0 Journal Article %A Nikolai A. Tyurin %T Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 291-305 %V 307 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_307_a15/ %G ru %F TM_2019_307_a15
Nikolai A. Tyurin. Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 291-305. http://geodesic.mathdoc.fr/item/TM_2019_307_a15/
[1] N. A. Tyurin, “Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations”, Russ. Math. Surv., 72:3 (2017), 513–546 | DOI | DOI | MR | Zbl
[2] N. A. Tyurin, “Universal Maslov class of a Bohr–Sommerfeld Lagrangian embedding into a pseudo-Einstein manifold”, Theor. Math. Phys., 150:2 (2007), 278–287 | DOI | DOI | MR | Zbl
[3] Audin M., Torus actions on symplectic manifolds, Prog. Math., 93, Birkhäuser, Basel, 2004 | MR | Zbl