Cosmological Solutions of Some Nonlocal Gravity Models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Significant phenomenological success and nice theoretical properties of general relativity (GR) are well known. However, GR is not a complete theory of gravity. Hence, there are many attempts to modify GR. One of the current approaches to a more complete theory of gravity is a nonlocal modification of GR. The nonlocal gravity approach, which we consider here without matter, is based on the action $S = (16 \pi G)^{-1}\int \sqrt {-g} (R - 2\Lambda + P(R) \mathcal F(\Box ) Q(R))\,d^4x$, where $R$ is the scalar curvature, $\Lambda $ is the cosmological constant, $P(R)$ and $Q(R)$ are some differentiable functions of $R$, and $\mathcal F(\Box ) = \sum _{n=1}^{+\infty } f_n \Box ^n$ is an analytic function of the corresponding d'Alembert operator $\Box $. We present here a brief review of some general properties and cosmological solutions for some specific functions $P(R)$ and $Q(R)$.
@article{TM_2019_306_a6,
     author = {I. Dimitrijevic and B. Dragovich and Z. Rakic and J. Stankovic},
     title = {Cosmological {Solutions} of {Some} {Nonlocal} {Gravity} {Models}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a6/}
}
TY  - JOUR
AU  - I. Dimitrijevic
AU  - B. Dragovich
AU  - Z. Rakic
AU  - J. Stankovic
TI  - Cosmological Solutions of Some Nonlocal Gravity Models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 75
EP  - 82
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a6/
LA  - ru
ID  - TM_2019_306_a6
ER  - 
%0 Journal Article
%A I. Dimitrijevic
%A B. Dragovich
%A Z. Rakic
%A J. Stankovic
%T Cosmological Solutions of Some Nonlocal Gravity Models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 75-82
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a6/
%G ru
%F TM_2019_306_a6
I. Dimitrijevic; B. Dragovich; Z. Rakic; J. Stankovic. Cosmological Solutions of Some Nonlocal Gravity Models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 75-82. http://geodesic.mathdoc.fr/item/TM_2019_306_a6/

[1] Aref'eva I.Ya., Joukovskaya L.V., Vernov S.Yu., “Bouncing and accelerating solutions in nonlocal stringy models”, J. High Energy Phys., 2007:7 (2007), 087 ; arXiv: hep-th/0701184. | DOI | MR

[2] Aref'eva I.Ya., Volovich I.V., “Cosmological daemon”, J. High Energy Phys., 2011:8 (2011), 102 ; arXiv: 1103.0273v2 [hep-th] | DOI | Zbl

[3] Belgacem E., Dirian Y., Foffa S., Maggiore M., “Nonlocal gravity. Conceptual aspects and cosmological predictions”, J. Cosmol. Astropart. Phys., 2018:3 (2018), 002 ; arXiv: 1712.07066 [hep-th] | DOI

[4] Biswas T., Conroy A., Koshelev A.S., Mazumdar A., Generalized ghost-free quadratic curvature gravity, E-print, 2013, arXiv: 1308.2319 [hep-th] | MR

[5] Biswas T., Gerwick E., Koivisto T., Mazumdar A., “Towards singularity- and ghost-free theories of gravity”, Phys. Rev. Lett., 108:3 (2012), 031101 ; arXiv: 1110.5249v2 [gr-qc] | DOI

[6] Biswas T., Koivisto T., Mazumdar A., “Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity”, J. Cosmol. Astropart. Phys., 2010:11 (2010), 008 ; arXiv: 1005.0590v2 [hep-th] | DOI

[7] Biswas T., Koshelev A.S., Mazumdar A., Vernov S.Yu., “Stable bounce and inflation in non-local higher derivative cosmology”, J. Cosmol. Astropart. Phys., 2012:8 (2012), 024 ; arXiv: 1206.6374v2 [astro-ph.CO] | DOI

[8] Biswas T., Mazumdar A., Siegel W., “Bouncing universes in string-inspired gravity”, J. Cosmol. Astropart. Phys., 2006:3 (2006), 009 ; arXiv: hep-th/0508194. | DOI | MR | Zbl

[9] Buoninfante L., Koshelev A.S., Lambiase G., Mazumdar A., Classical properties of non-local, ghost- and singularity-free gravity, E-print, 2018, arXiv: 1802.00399 [gr-qc] | MR | Zbl

[10] Clifton T., Ferreira P.G., Padilla A., Skordis C., “Modified gravity and cosmology”, Phys. Rep., 513:1–3 (2012), 1–189 ; arXiv: 1106.2476v2 [astro-ph.CO] | DOI | MR

[11] Conroy A., Koivisto T., Mazumdar A., Teimouri A., Generalised quadratic curvature, non-local infrared modifications of gravity and Newtonian potentials, E-print, 2014, arXiv: 1406.4998v3 [hep-th] | MR

[12] Deser S., Woodard R., “Nonlocal cosmology”, Phys. Rev. Lett., 99:11 (2007), 111301 ; arXiv: 0706.2151 [astro-ph] | DOI | MR | Zbl

[13] Dimitrijevic I., “Cosmological solutions in modified gravity with monomial nonlocality”, Appl. Math. Comput., 285 (2016), 195–203 | MR | Zbl

[14] Dimitrijevic I., Dragovich B., Grujic J., Koshelev A.S., Rakic Z., Cosmology of modified gravity with a non-local $f(R)$, E-print, 2015, arXiv: 1509.04254v1 [hep-th] | MR

[15] Dimitrijevic I., Dragovich B., Grujic J., Rakic Z., “On modified gravity”, Lie theory and its applications in physics, IX Int. Workshop, Springer Proc. Math. Stat., 36, Springer, Tokyo, 2013, 251–259 ; arXiv: 1202.2352 [hep-th] | MR | Zbl

[16] Dimitrijevic I., Dragovich B., Grujic J., Rakic Z., “New cosmological solutions in nonlocal modified gravity”, Rom. J. Phys., 58:5–6 (2013), 550–559 ; arXiv: 1302.2794 [gr-qc] | MR

[17] Dimitrijevic I., Dragovich B., Grujic J., Rakic Z., “Some power-law cosmological solutions in nonlocal modified gravity”, Lie theory and its applications in physics (Varna, Bulgaria, 2013), Springer Proc. Math. Stat., 111, Springer, Tokyo, 2014, 241–250 | DOI | MR | Zbl

[18] Dimitrijević I., Dragovich B., Grujić J., Rakić Z., “Some cosmological solutions of a nonlocal modified gravity”, Filomat, 29:3 (2015), 619–628 ; arXiv: 1508.05583 [hep-th] | DOI | MR | Zbl

[19] Dimitrijević I., Dragovich B., Rakić Z., Stanković J., “On nonlocal gravity with constant scalar curvature”, Publ. Inst. math. Nouv. sér., 103 (2018), 53–59 | DOI | MR

[20] Dimitrijevic I., Dragovich B., Rakic Z., Stankovic J., “Variations of infinite derivative modified gravity”, Quantum theory and symmetries with Lie theory and its applications in physics (QTS-X/LT-XII, Varna, 2017), v. 1, Springer Proc. Math. Stat., 263, Springer, Singapore, 2018, 91–111 | DOI | MR | Zbl

[21] Dimitrijevic I., Dragovich B., Stankovic J., Koshelev A.S., Rakic Z., “On nonlocal modified gravity and its cosmological solutions”, Lie theory and its applications in physics (Varna, 2015), Springer Proc. Math. Stat., 191, Springer, Singapore, 2016, 35–51 ; arXiv: 1701.02090 [hep-th] | DOI | MR | Zbl

[22] Dragovich B., “On nonlocal modified gravity and cosmology”, Lie theory and its applications in physics (Varna, Bulgaria, 2013), Springer Proc. Math. Stat., 111, Springer, Tokyo, 2014, 251–262 | DOI | MR | Zbl

[23] Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., Zelenov E.I., “$p$-Adic mathematical physics: The first 30 years”, $p$-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121 ; arXiv: 1705.04758 [math-ph] | DOI | MR | Zbl

[24] Elizalde E., Pozdeeva E.O., Vernov S.Yu., “Stability of de Sitter solutions in non-local cosmological models”, Proc. Sci., 138: QFTHEP2011 (2012), 038 ; arXiv: 1202.0178 [gr-qc] | MR

[25] Koshelev A.S., Sravan Kumar K., Starobinsky A.A., “$R^2$ inflation to probe non-perturbative quantum gravity”, J. High Energy Phys., 2018:3 (2018), 071 ; arXiv: 1711.08864 [hep-th] | DOI | MR

[26] Koshelev A.S., Marto J., Mazumdar A., Towards non-singular metric solution in infinite derivative gravity, E-print, 2018, arXiv: 1803.00309v2 [gr-qc] | MR

[27] Koshelev A.S., Modesto L., Rachwal L., Starobinsky A.A., “Occurrence of exact $R^2$ inflation in non-local UV-complete gravity”, J. High Energy Phys., 2016:11 (2016), 067 ; arXiv: 1604.03127 [hep-th] | DOI | MR

[28] Koshelev A.S., Vernov S.Yu., “On bouncing solutions in non-local gravity”, Phys. Part. Nuclei, 43:5 (2012), 666–668 ; arXiv: 1202.1289v1 [hep-th] | DOI

[29] Modesto L., “Super-renormalizable quantum gravity”, Phys. Rev. D, 86:4 (2012), 044005 ; arXiv: 1107.2403 [hep-th] | DOI | MR

[30] Modesto L., Rachwal L., “Super-renormalizable and finite gravitational theories”, Nucl. Phys. B, 889 (2014), 228–248 ; arXiv: 1407.8036 [hep-th] | DOI | MR | Zbl

[31] Mukhanov V., Physical foundations of cosmology, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[32] Nojiri S., Odintsov S.D., “Unified cosmic history in modified gravity: From $F(R)$ theory to Lorentz non-invariant models”, Phys. Rep., 505:2–4 (2011), 59–144 ; arXiv: 1011.0544v4 [gr-qc] | DOI | MR

[33] Nojiri S., Odintsov S.D., Oikonomou V.K., “Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution”, Phys. Rep., 692 (2017), 1–104 ; arXiv: 1705.11098 [gr-qc] | DOI | MR | Zbl

[34] Novello M., Perez Bergliaffa S.E., “Bouncing cosmologies”, Phys. Rep., 463:4 (2008), 127–213 ; arXiv: 0802.1634 [astro-ph] | DOI | MR

[35] Sotiriou T.P., Faraoni V., “$f(R)$ theories of gravity”, Rev. Mod. Phys., 82:1 (2010), 451–497 ; arXiv: 0805.1726v4 [gr-qc] | DOI | MR | Zbl

[36] Stelle K.S., “Renormalization of higher-derivative quantum gravity”, Phys. Rev. D, 16:4 (1977), 953–969 | DOI | MR

[37] Wald R.M., General relativity, Univ. Chicago Press, Chicago, 1984 | MR | Zbl

[38] Woodard R.P., Nonlocal models of cosmic acceleration, E-print, 2014, arXiv: 1401.0254 [astro-ph.CO] | MR