Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_306_a6, author = {I. Dimitrijevic and B. Dragovich and Z. Rakic and J. Stankovic}, title = {Cosmological {Solutions} of {Some} {Nonlocal} {Gravity} {Models}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {75--82}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a6/} }
TY - JOUR AU - I. Dimitrijevic AU - B. Dragovich AU - Z. Rakic AU - J. Stankovic TI - Cosmological Solutions of Some Nonlocal Gravity Models JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 75 EP - 82 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_306_a6/ LA - ru ID - TM_2019_306_a6 ER -
%0 Journal Article %A I. Dimitrijevic %A B. Dragovich %A Z. Rakic %A J. Stankovic %T Cosmological Solutions of Some Nonlocal Gravity Models %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 75-82 %V 306 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_306_a6/ %G ru %F TM_2019_306_a6
I. Dimitrijevic; B. Dragovich; Z. Rakic; J. Stankovic. Cosmological Solutions of Some Nonlocal Gravity Models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 75-82. http://geodesic.mathdoc.fr/item/TM_2019_306_a6/
[1] Aref'eva I.Ya., Joukovskaya L.V., Vernov S.Yu., “Bouncing and accelerating solutions in nonlocal stringy models”, J. High Energy Phys., 2007:7 (2007), 087 ; arXiv: hep-th/0701184. | DOI | MR
[2] Aref'eva I.Ya., Volovich I.V., “Cosmological daemon”, J. High Energy Phys., 2011:8 (2011), 102 ; arXiv: 1103.0273v2 [hep-th] | DOI | Zbl
[3] Belgacem E., Dirian Y., Foffa S., Maggiore M., “Nonlocal gravity. Conceptual aspects and cosmological predictions”, J. Cosmol. Astropart. Phys., 2018:3 (2018), 002 ; arXiv: 1712.07066 [hep-th] | DOI
[4] Biswas T., Conroy A., Koshelev A.S., Mazumdar A., Generalized ghost-free quadratic curvature gravity, E-print, 2013, arXiv: 1308.2319 [hep-th] | MR
[5] Biswas T., Gerwick E., Koivisto T., Mazumdar A., “Towards singularity- and ghost-free theories of gravity”, Phys. Rev. Lett., 108:3 (2012), 031101 ; arXiv: 1110.5249v2 [gr-qc] | DOI
[6] Biswas T., Koivisto T., Mazumdar A., “Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity”, J. Cosmol. Astropart. Phys., 2010:11 (2010), 008 ; arXiv: 1005.0590v2 [hep-th] | DOI
[7] Biswas T., Koshelev A.S., Mazumdar A., Vernov S.Yu., “Stable bounce and inflation in non-local higher derivative cosmology”, J. Cosmol. Astropart. Phys., 2012:8 (2012), 024 ; arXiv: 1206.6374v2 [astro-ph.CO] | DOI
[8] Biswas T., Mazumdar A., Siegel W., “Bouncing universes in string-inspired gravity”, J. Cosmol. Astropart. Phys., 2006:3 (2006), 009 ; arXiv: hep-th/0508194. | DOI | MR | Zbl
[9] Buoninfante L., Koshelev A.S., Lambiase G., Mazumdar A., Classical properties of non-local, ghost- and singularity-free gravity, E-print, 2018, arXiv: 1802.00399 [gr-qc] | MR | Zbl
[10] Clifton T., Ferreira P.G., Padilla A., Skordis C., “Modified gravity and cosmology”, Phys. Rep., 513:1–3 (2012), 1–189 ; arXiv: 1106.2476v2 [astro-ph.CO] | DOI | MR
[11] Conroy A., Koivisto T., Mazumdar A., Teimouri A., Generalised quadratic curvature, non-local infrared modifications of gravity and Newtonian potentials, E-print, 2014, arXiv: 1406.4998v3 [hep-th] | MR
[12] Deser S., Woodard R., “Nonlocal cosmology”, Phys. Rev. Lett., 99:11 (2007), 111301 ; arXiv: 0706.2151 [astro-ph] | DOI | MR | Zbl
[13] Dimitrijevic I., “Cosmological solutions in modified gravity with monomial nonlocality”, Appl. Math. Comput., 285 (2016), 195–203 | MR | Zbl
[14] Dimitrijevic I., Dragovich B., Grujic J., Koshelev A.S., Rakic Z., Cosmology of modified gravity with a non-local $f(R)$, E-print, 2015, arXiv: 1509.04254v1 [hep-th] | MR
[15] Dimitrijevic I., Dragovich B., Grujic J., Rakic Z., “On modified gravity”, Lie theory and its applications in physics, IX Int. Workshop, Springer Proc. Math. Stat., 36, Springer, Tokyo, 2013, 251–259 ; arXiv: 1202.2352 [hep-th] | MR | Zbl
[16] Dimitrijevic I., Dragovich B., Grujic J., Rakic Z., “New cosmological solutions in nonlocal modified gravity”, Rom. J. Phys., 58:5–6 (2013), 550–559 ; arXiv: 1302.2794 [gr-qc] | MR
[17] Dimitrijevic I., Dragovich B., Grujic J., Rakic Z., “Some power-law cosmological solutions in nonlocal modified gravity”, Lie theory and its applications in physics (Varna, Bulgaria, 2013), Springer Proc. Math. Stat., 111, Springer, Tokyo, 2014, 241–250 | DOI | MR | Zbl
[18] Dimitrijević I., Dragovich B., Grujić J., Rakić Z., “Some cosmological solutions of a nonlocal modified gravity”, Filomat, 29:3 (2015), 619–628 ; arXiv: 1508.05583 [hep-th] | DOI | MR | Zbl
[19] Dimitrijević I., Dragovich B., Rakić Z., Stanković J., “On nonlocal gravity with constant scalar curvature”, Publ. Inst. math. Nouv. sér., 103 (2018), 53–59 | DOI | MR
[20] Dimitrijevic I., Dragovich B., Rakic Z., Stankovic J., “Variations of infinite derivative modified gravity”, Quantum theory and symmetries with Lie theory and its applications in physics (QTS-X/LT-XII, Varna, 2017), v. 1, Springer Proc. Math. Stat., 263, Springer, Singapore, 2018, 91–111 | DOI | MR | Zbl
[21] Dimitrijevic I., Dragovich B., Stankovic J., Koshelev A.S., Rakic Z., “On nonlocal modified gravity and its cosmological solutions”, Lie theory and its applications in physics (Varna, 2015), Springer Proc. Math. Stat., 191, Springer, Singapore, 2016, 35–51 ; arXiv: 1701.02090 [hep-th] | DOI | MR | Zbl
[22] Dragovich B., “On nonlocal modified gravity and cosmology”, Lie theory and its applications in physics (Varna, Bulgaria, 2013), Springer Proc. Math. Stat., 111, Springer, Tokyo, 2014, 251–262 | DOI | MR | Zbl
[23] Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., Zelenov E.I., “$p$-Adic mathematical physics: The first 30 years”, $p$-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121 ; arXiv: 1705.04758 [math-ph] | DOI | MR | Zbl
[24] Elizalde E., Pozdeeva E.O., Vernov S.Yu., “Stability of de Sitter solutions in non-local cosmological models”, Proc. Sci., 138: QFTHEP2011 (2012), 038 ; arXiv: 1202.0178 [gr-qc] | MR
[25] Koshelev A.S., Sravan Kumar K., Starobinsky A.A., “$R^2$ inflation to probe non-perturbative quantum gravity”, J. High Energy Phys., 2018:3 (2018), 071 ; arXiv: 1711.08864 [hep-th] | DOI | MR
[26] Koshelev A.S., Marto J., Mazumdar A., Towards non-singular metric solution in infinite derivative gravity, E-print, 2018, arXiv: 1803.00309v2 [gr-qc] | MR
[27] Koshelev A.S., Modesto L., Rachwal L., Starobinsky A.A., “Occurrence of exact $R^2$ inflation in non-local UV-complete gravity”, J. High Energy Phys., 2016:11 (2016), 067 ; arXiv: 1604.03127 [hep-th] | DOI | MR
[28] Koshelev A.S., Vernov S.Yu., “On bouncing solutions in non-local gravity”, Phys. Part. Nuclei, 43:5 (2012), 666–668 ; arXiv: 1202.1289v1 [hep-th] | DOI
[29] Modesto L., “Super-renormalizable quantum gravity”, Phys. Rev. D, 86:4 (2012), 044005 ; arXiv: 1107.2403 [hep-th] | DOI | MR
[30] Modesto L., Rachwal L., “Super-renormalizable and finite gravitational theories”, Nucl. Phys. B, 889 (2014), 228–248 ; arXiv: 1407.8036 [hep-th] | DOI | MR | Zbl
[31] Mukhanov V., Physical foundations of cosmology, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl
[32] Nojiri S., Odintsov S.D., “Unified cosmic history in modified gravity: From $F(R)$ theory to Lorentz non-invariant models”, Phys. Rep., 505:2–4 (2011), 59–144 ; arXiv: 1011.0544v4 [gr-qc] | DOI | MR
[33] Nojiri S., Odintsov S.D., Oikonomou V.K., “Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution”, Phys. Rep., 692 (2017), 1–104 ; arXiv: 1705.11098 [gr-qc] | DOI | MR | Zbl
[34] Novello M., Perez Bergliaffa S.E., “Bouncing cosmologies”, Phys. Rep., 463:4 (2008), 127–213 ; arXiv: 0802.1634 [astro-ph] | DOI | MR
[35] Sotiriou T.P., Faraoni V., “$f(R)$ theories of gravity”, Rev. Mod. Phys., 82:1 (2010), 451–497 ; arXiv: 0805.1726v4 [gr-qc] | DOI | MR | Zbl
[36] Stelle K.S., “Renormalization of higher-derivative quantum gravity”, Phys. Rev. D, 16:4 (1977), 953–969 | DOI | MR
[37] Wald R.M., General relativity, Univ. Chicago Press, Chicago, 1984 | MR | Zbl
[38] Woodard R.P., Nonlocal models of cosmic acceleration, E-print, 2014, arXiv: 1401.0254 [astro-ph.CO] | MR