Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_306_a20, author = {A. S. Trushechkin}, title = {Dynamics of {Reservoir} {Observables} within the {Zwanzig} {Projection} {Operator} {Method} in the {Theory} of {Open} {Quantum} {Systems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {273--286}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a20/} }
TY - JOUR AU - A. S. Trushechkin TI - Dynamics of Reservoir Observables within the Zwanzig Projection Operator Method in the Theory of Open Quantum Systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 273 EP - 286 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_306_a20/ LA - ru ID - TM_2019_306_a20 ER -
%0 Journal Article %A A. S. Trushechkin %T Dynamics of Reservoir Observables within the Zwanzig Projection Operator Method in the Theory of Open Quantum Systems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 273-286 %V 306 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_306_a20/ %G ru %F TM_2019_306_a20
A. S. Trushechkin. Dynamics of Reservoir Observables within the Zwanzig Projection Operator Method in the Theory of Open Quantum Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 273-286. http://geodesic.mathdoc.fr/item/TM_2019_306_a20/
[1] Accardi L., Kozyrev S., “Lectures on quantum interacting particle systems”, Quantum interacting particle systems: Lecture notes of the Volterra–CIRM Int. Sch. (Trento, 2000), QP–PQ: Quantum Probab. White Noise Anal., 14, World Scientific, Hackensack, NJ, 2002, 1–195 | DOI | MR
[2] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl
[3] I. Ya. Aref'eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic limit method and interference in quantum many-particle systems”, Theor. Math. Phys., 183:3 (2015), 782–799 | DOI | DOI | MR | Zbl
[4] Barra F., “The thermodynamic cost of driving quantum systems by their boundaries”, Sci. Rep., 5 (2015), 14873 | DOI
[5] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR | Zbl
[6] Collini E., Wong C.Y., Wilk K.E., Curmi P.M.G., Brumer P., Scholes G.D., “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature”, Nature, 463 (2010), 644–647 | DOI
[7] Davies E.B., “Markovian master equations”, Commun. Math. Phys., 39 (1974), 91–110 | DOI | MR | Zbl
[8] Dümcke R., Spohn H., “The proper form of the generator in the weak coupling limit”, Z. Phys. B, 34:4 (1979), 419–422 | DOI
[9] Engel G.S., Calhoun T.R., Read E.L., Ahn T.-K., Mančal T., Cheng Y.-C., Blankenship R.E., Fleming G.R., “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems”, Nature, 446 (2007), 782–786 | DOI
[10] González J.O., Correa L.A., Nocerino G., Palao J.P., Alonso D., Adesso G., “Testing the validity of the ‘local’ and ‘global’ GKLS master equations on an exactly solvable model”, Open Syst. Inf. Dyn., 24:4 (2017), 1740010 | DOI | MR | Zbl
[11] Gorini V., Kossakowski A., Sudarshan E.C.G., “Completely positive dynamical semigroups of $N$-level systems”, J. Math. Phys., 17:5 (1976), 821–825 | DOI | MR
[12] Hofer P.P., Perarnau-Llobet M., Miranda L.D.M., Haack G., Silva R., Brask J.B., Brunner N., “Markovian master equations for quantum thermal machines: Local versus global approach”, New J. Phys., 19:12 (2017), 123037 | DOI
[13] Ishizaki A., Fleming G.R., “On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer”, J. Chem. Phys., 130:23 (2009), 234110 | DOI
[14] Jeske J., Ing D.J., Plenio M.B., Huelga S.F., Cole J.H., “Bloch–Redfield equations for modeling light-harvesting complexes”, J. Chem. Phys., 142:6 (2015), 064104 | DOI
[15] Kozyrev S.V., Mironov A.A., Teretenkov A.E., Volovich I.V., “Flows in non-equilibrium quantum systems and quantum photosynthesis”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:4 (2017), 1750021 ; arXiv: 1612.00213 [quant-ph] | DOI | MR | Zbl
[16] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48 (1976), 119–130 | DOI | MR | Zbl
[17] May V., Kühn O., Charge and energy transfer dynamics in molecular systems, Wiley-VCH, Weinheim, 2011
[18] Novoderezhkin V.I., van Grondelle R., “Physical origins and models of energy transfer in photosynthetic light-harvesting”, Phys. Chem. Chem. Phys., 12:27 (2010), 7352–7365 | DOI
[19] Quantum effects in biology, ed. by M. Mohseni, Y. Omar, G.S. Engel, M.B. Plenio, Cambridge Univ. Press, Cambridge, 2014
[20] Rivas Á., Huelga S.F., Open quantum systems: An introduction, Springer, Heidelberg, 2012 | MR | Zbl
[21] Seibt J., Mančal T., “Ultrafast energy transfer with competing channels: Non-equilibrium Förster and modified Redfield theories”, J. Chem. Phys., 146:17 (2017), 174109 | DOI
[22] A. S. Trushechkin, “On the general definition of the production of entropy in open Markov quantum systems”, Quantum Computations, Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh., Temat. Obz., 138, VINITI, Moscow, 2017, 82–98 | DOI | MR | Zbl
[23] J. Math. Sci., 241:2 (2019), 191–209 | DOI | MR | Zbl
[24] A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271 | DOI | DOI | MR | Zbl
[25] Trushechkin A., “Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer”, J. Chem. Phys., 151:7 (2019), 074101 | DOI
[26] Trushechkin A.S., Volovich I.V., “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, Europhys. Lett., 113:3 (2016), 30005 | DOI
[27] Valkunas L., Abramavicius D., Mančal T., Molecular excitation dynamics and relaxation: Quantum theory and spectroscopy, Wiley-VCH, Berlin, 2013
[28] I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system”, Proc. Steklov Inst. Math., 294 (2016), 241–251 | DOI | DOI | MR | Zbl
[29] Yang M., Fleming G.R., “Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations”, Chem. Phys., 282:1 (2002), 163–180 | DOI | MR
[30] Zwanzig R., “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR