Hydrodynamics and Electromagnetism: Differential--Geometric Aspects and Analogies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 148-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known evolution equations of a solenoidal vector field with integral curves frozen into a continuous medium are presented in an invariant form in the four-dimensional spacetime. A fundamental $1$-form ($4$-potential) is introduced, and the problem of variation of the action (integral of the $4$-potential along smooth curves) is considered. The extremals of the action in the class of curves with fixed endpoints are described, and the conservation laws generated by symmetry groups are found. Under the assumption that the electric and magnetic fields are orthogonal, Maxwell's equations are represented as evolution equations of a solenoidal vector field. The role of the velocity field is played by the normalized Poynting vector field.
Keywords: 4-potential, action functional, Maxwell's equations, Poynting vector.
Mots-clés : Bernoulli surfaces
@article{TM_2019_306_a12,
     author = {V. V. Kozlov},
     title = {Hydrodynamics and {Electromagnetism:} {Differential--Geometric} {Aspects} and {Analogies}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {148--157},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a12/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Hydrodynamics and Electromagnetism: Differential--Geometric Aspects and Analogies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 148
EP  - 157
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a12/
LA  - ru
ID  - TM_2019_306_a12
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Hydrodynamics and Electromagnetism: Differential--Geometric Aspects and Analogies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 148-157
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a12/
%G ru
%F TM_2019_306_a12
V. V. Kozlov. Hydrodynamics and Electromagnetism: Differential--Geometric Aspects and Analogies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 148-157. http://geodesic.mathdoc.fr/item/TM_2019_306_a12/

[1] É. Cartan, Leçons sur les invariants intégraux: Cours professé à la Faculté des Sciences de Paris, A. Hermann Fils, Paris, 1922 | MR

[2] L. I. Sedov, Mechanics of Continuous Media, Nauka, Moscow, 1970 | MR | Zbl

[3] v. 1, 2, World Scientific, River Edge, NJ, 1997 | MR | Zbl

[4] V. V. Kozlov, General Vortex Theory, Inst. Komp'yut. Issled., Moscow, 2013 (in Russian) | MR

[5] E. Whittaker, A History of the Theories of Aether and Electricity: The Modern Theories 1900–1926, Thomas Nelson and Sons, London, 1953 | MR | Zbl

[6] S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields, MTsNMO, Moscow, 2005 | MR

[7] Am. Math. Soc., Providence, RI, 2006 | MR