Quasi-averages in Random Matrix Models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 7-15
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the Bogoliubov quasi-average approach to studying phase transitions in random matrix models related to a zero-dimensional version of the fermionic SYK model with replicas. We show that in the model with quartic interaction deformed by a quadratic term, there exist either two or four different phases with nonvanishing replica off-diagonal correlation functions.
@article{TM_2019_306_a0,
author = {I. Ya. Aref'eva and I. V. Volovich},
title = {Quasi-averages in {Random} {Matrix} {Models}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {7--15},
publisher = {mathdoc},
volume = {306},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a0/}
}
I. Ya. Aref'eva; I. V. Volovich. Quasi-averages in Random Matrix Models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 7-15. http://geodesic.mathdoc.fr/item/TM_2019_306_a0/