Quasi-averages in Random Matrix Models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 7-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the Bogoliubov quasi-average approach to studying phase transitions in random matrix models related to a zero-dimensional version of the fermionic SYK model with replicas. We show that in the model with quartic interaction deformed by a quadratic term, there exist either two or four different phases with nonvanishing replica off-diagonal correlation functions.
@article{TM_2019_306_a0,
     author = {I. Ya. Aref'eva and I. V. Volovich},
     title = {Quasi-averages in {Random} {Matrix} {Models}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a0/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
TI  - Quasi-averages in Random Matrix Models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 7
EP  - 15
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a0/
LA  - ru
ID  - TM_2019_306_a0
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%T Quasi-averages in Random Matrix Models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 7-15
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a0/
%G ru
%F TM_2019_306_a0
I. Ya. Aref'eva; I. V. Volovich. Quasi-averages in Random Matrix Models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 7-15. http://geodesic.mathdoc.fr/item/TM_2019_306_a0/

[1] Aref'eva I., Khramtsov M., Tikhanovskaya M., Volovich I., “Replica-nondiagonal solutions in the SYK model”, J. High Energy Phys., 2019:07 (2019), 113 ; arXiv: 1811.04831 [hep-th] | DOI | MR | Zbl

[2] I. Ya. Aref'eva and I. V. Volovich, “Notes on the SYK model in real time”, Theor. Math. Phys., 197:2 (2018), 1650–1662 | DOI | DOI | MR | Zbl

[3] Aref'eva I., Volovich I., “Spontaneous symmetry breaking in fermionic random matrix model”, J. High Energy Phys., 2019:10 (2019), 114 ; arXiv: 1902.09970 [hep-th] | DOI | MR

[4] Belokurov V.V., Shavgulidze E.T., Simple rules of functional integration in the Schwarzian theory: SYK correlators, E-print, 2018, arXiv: 1811.11863 [hep-th] | MR

[5] Bogoliubov N.N., Lectures on quantum statistics. V. 2: Quasi-averages, Gordon and Breach, New York, 1970 | MR

[6] N. N. Bogoliubov, Collection of Scientific Works, v. 6, Equilibrium Statistical Mechanics, 1945–1986, Nauka, Moscow, 2006 (in Russian)

[7] Cotler J.S. et al., “Black holes and random matrices”, J. High Energy Phys., 2017:05 (2017), 118 ; arXiv: 1611.04650 [hep-th] | DOI | MR | Zbl | MR

[8] Deift P., Kriecherbauer T., McLaughlin K.T-R., Venakides S., Zhou X., “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Commun. Pure Appl. Math., 52:12 (1999), 1491–1552 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] Fu W., Sachdev S., “Numerical study of fermion and boson models with infinite-range random interactions”, Phys. Rev. B, 94:3 (2016), 035135 ; arXiv: 1603.05246 [cond-mat.str-el] | DOI | MR

[10] García-García A.M., Loureiro B., Romero-Bermúdez A., Tezuka M., “Chaotic-integrable transition in the Sachdev–Ye–Kitaev model”, Phys. Rev. Lett., 120:24 (2018), 241603 ; arXiv: 1707.02197 [hep-th] | DOI

[11] García-García A.M., Nosaka T., Rosa D., Verbaarschot J.J.M., “Quantum chaos transition in a two-site Sachdev–Ye–Kitaev model dual to an eternal traversable wormhole”, Phys. Rev. D, 100:2 (2019), 026002 ; arXiv: 1901.06031 [hep-th] | DOI

[12] García-García A.M., Verbaarschot J.J.M., “Spectral and thermodynamic properties of the Sachdev–Ye–Kitaev model”, Phys. Rev. D, 94:12 (2016), 126010 ; arXiv: 1610.03816 [hep-th] | DOI

[13] Georges A., Parcollet O., Sachdev S., “Quantum fluctuations of a nearly critical Heisenberg spin glass”, Phys. Rev. B, 63:13 (2001), 134406 ; arXiv: cond-mat/0009388 [cond-mat.str-el] | DOI

[14] Gur-Ari G., Mahajan R., Vaezi A., “Does the SYK model have a spin glass phase?”, J. High Energy Phys., 2018:11 (2018), 70 ; arXiv: 1806.10145 [hep-th] | DOI | MR | Zbl

[15] Kim J., Klebanov I.R., Tarnopolsky G., Zhao W., “Symmetry breaking in coupled SYK or tensor models”, Phys. Rev. X, 9:02 (2019), 021043; arXiv: 1902.02287 [hep-th]

[16] Kitaev A., A simple model of quantum holography, Talk at the KITP Program: Entanglement in Strongly-Correlated Quantum Matter (Santa Barbara, CA: Kavli Inst. Theor. Phys., Apr. 7, May 27, 2015), Part 1: http://online.kitp.ucsb.edu/online/entangled15/kitaev/

[17] Maldacena J., Qi X.-L., Eternal traversable wormhole, E-print, 2018, arXiv: 1804.00491 [hep-th] | Zbl

[18] Maldacena J., Stanford D., “Remarks on the Sachdev–Ye–Kitaev model”, Phys. Rev. D, 94:10 (2016), 106002 ; arXiv: 1604.07818 [hep-th] | DOI | MR

[19] Polchinski J., Rosenhaus V., “The spectrum in the Sachdev–Ye–Kitaev model”, J. High Energy Phys., 2016:04 (2016), 001 ; arXiv: 1601.06768 [hep-th] | DOI | MR

[20] Saad P., Shenker S.H., Stanford D., A semiclassical ramp in SYK and in gravity, E-print, 2018, arXiv: 1806.06840 [hep-th]

[21] Sachdev S., “Bekenstein–Hawking entropy and strange metals”, Phys. Rev. X, 5:4 (2015), 041025 ; arXiv: 1506.05111 [hep-th] | MR

[22] Sachdev S., Ye J., “Gapless spin-fluid ground state in a random quantum Heisenberg magnet”, Phys. Rev. Lett., 70:21 (1993), 3339–3342 ; arXiv: cond-mat/9212030. | DOI

[23] V. S. Vladimirov and I. V. Volovich, “Superanalysis. I: Differential calculus”, Theor. Math. Phys., 59:1 (1984), 317–335 | DOI | MR | Zbl

[24] V. S. Vladimirov and I. V. Volovich, “Superanalysis. II: Integral calculus”, Theor. Math. Phys., 60:2 (1984), 743–765 | DOI | MR | Zbl

[25] Wang H., Bagrets D., Chudnovskiy A.L., Kamenev A., “On the replica structure of Sachdev–Ye–Kitaev model”, J. High Energy Phys., 2019:09 (2019), 057 ; arXiv: 1812.02666 [hep-th] | DOI

[26] W. F. Wreszinski and V. A. Zagrebnov, “Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations”, Theor. Math. Phys., 194:2 (2018), 157–188 | DOI | DOI | MR | Zbl