The Rotation Number Integer Quantization Effect in Braid Groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 197-210

Voir la notice de l'article provenant de la source Math-Net.Ru

V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi initiated the study of the rotation number integer quantization effect for a class of dynamical systems on a torus that includes dynamical systems modeling the dynamics of the Josephson junction. Focusing on this effect, we initiate the study of a similar rotation number quantization effect for a class of groups acting on the circle, including Artin's braid groups.
@article{TM_2019_305_a9,
     author = {A. V. Malyutin},
     title = {The {Rotation} {Number} {Integer} {Quantization} {Effect} in {Braid} {Groups}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {197--210},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a9/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - The Rotation Number Integer Quantization Effect in Braid Groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 197
EP  - 210
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a9/
LA  - ru
ID  - TM_2019_305_a9
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T The Rotation Number Integer Quantization Effect in Braid Groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 197-210
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a9/
%G ru
%F TM_2019_305_a9
A. V. Malyutin. The Rotation Number Integer Quantization Effect in Braid Groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 197-210. http://geodesic.mathdoc.fr/item/TM_2019_305_a9/