On Higher Massey Products and Rational Formality for Moment--Angle Manifolds over Multiwedges
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 174-196
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that certain conditions on multigraded Betti numbers of a simplicial complex $K$ imply the existence of a higher Massey product in the cohomology of a moment–angle complex $\mathcal Z_K$, and this product contains a unique element (a strictly defined product). Using the simplicial multiwedge construction, we find a family $\mathcal F$ of polyhedral products being smooth closed manifolds such that for any $l,r\geq 2$ there exists an $l$-connected manifold $M\in \mathcal F$ with a nontrivial strictly defined $r$-fold Massey product in $H^*(M)$. As an application to homological algebra, we determine a wide class of triangulated spheres $K$ such that a nontrivial higher Massey product of any order may exist in the Koszul homology of their Stanley–Reisner rings. As an application to rational homotopy theory, we establish a combinatorial criterion for a simple graph $\Gamma $ to provide a (rationally) formal generalized moment–angle manifold $\mathcal Z_P^J=(\underline {D}^{2j_i},\underline {S}^{2j_i-1})^{\partial P^*}$, $J=(j_1,\dots ,j_m)$, over a graph-associahedron $P=P_{\Gamma }$, and compute all the diffeomorphism types of formal moment–angle manifolds over graph-associahedra.
Keywords:
polyhedral product, moment–angle manifold, Stanley–Reisner ring, Massey product
Mots-clés : simplicial multiwedge, graph-associahedron.
Mots-clés : simplicial multiwedge, graph-associahedron.
@article{TM_2019_305_a8,
author = {Ivan Yu. Limonchenko},
title = {On {Higher} {Massey} {Products} and {Rational} {Formality} for {Moment--Angle} {Manifolds} over {Multiwedges}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {174--196},
publisher = {mathdoc},
volume = {305},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a8/}
}
TY - JOUR AU - Ivan Yu. Limonchenko TI - On Higher Massey Products and Rational Formality for Moment--Angle Manifolds over Multiwedges JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 174 EP - 196 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a8/ LA - ru ID - TM_2019_305_a8 ER -
%0 Journal Article %A Ivan Yu. Limonchenko %T On Higher Massey Products and Rational Formality for Moment--Angle Manifolds over Multiwedges %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 174-196 %V 305 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_305_a8/ %G ru %F TM_2019_305_a8
Ivan Yu. Limonchenko. On Higher Massey Products and Rational Formality for Moment--Angle Manifolds over Multiwedges. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 174-196. http://geodesic.mathdoc.fr/item/TM_2019_305_a8/