On Higher Massey Products and Rational Formality for Moment--Angle Manifolds over Multiwedges
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 174-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that certain conditions on multigraded Betti numbers of a simplicial complex $K$ imply the existence of a higher Massey product in the cohomology of a moment–angle complex $\mathcal Z_K$, and this product contains a unique element (a strictly defined product). Using the simplicial multiwedge construction, we find a family $\mathcal F$ of polyhedral products being smooth closed manifolds such that for any $l,r\geq 2$ there exists an $l$-connected manifold $M\in \mathcal F$ with a nontrivial strictly defined $r$-fold Massey product in $H^*(M)$. As an application to homological algebra, we determine a wide class of triangulated spheres $K$ such that a nontrivial higher Massey product of any order may exist in the Koszul homology of their Stanley–Reisner rings. As an application to rational homotopy theory, we establish a combinatorial criterion for a simple graph $\Gamma $ to provide a (rationally) formal generalized moment–angle manifold $\mathcal Z_P^J=(\underline {D}^{2j_i},\underline {S}^{2j_i-1})^{\partial P^*}$, $J=(j_1,\dots ,j_m)$, over a graph-associahedron $P=P_{\Gamma }$, and compute all the diffeomorphism types of formal moment–angle manifolds over graph-associahedra.
Keywords: polyhedral product, moment–angle manifold, Stanley–Reisner ring, Massey product
Mots-clés : simplicial multiwedge, graph-associahedron.
@article{TM_2019_305_a8,
     author = {Ivan Yu. Limonchenko},
     title = {On {Higher} {Massey} {Products} and {Rational} {Formality} for {Moment--Angle} {Manifolds} over {Multiwedges}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {174--196},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a8/}
}
TY  - JOUR
AU  - Ivan Yu. Limonchenko
TI  - On Higher Massey Products and Rational Formality for Moment--Angle Manifolds over Multiwedges
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 174
EP  - 196
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a8/
LA  - ru
ID  - TM_2019_305_a8
ER  - 
%0 Journal Article
%A Ivan Yu. Limonchenko
%T On Higher Massey Products and Rational Formality for Moment--Angle Manifolds over Multiwedges
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 174-196
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a8/
%G ru
%F TM_2019_305_a8
Ivan Yu. Limonchenko. On Higher Massey Products and Rational Formality for Moment--Angle Manifolds over Multiwedges. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 174-196. http://geodesic.mathdoc.fr/item/TM_2019_305_a8/