Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_305_a14, author = {Krzysztof M. Pawa{\l}owski and Jan Pulikowski}, title = {Smooth {Actions} of $p${-Toral} {Groups} on $\mathbb Z${-Acyclic} {Manifolds}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {283--290}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a14/} }
TY - JOUR AU - Krzysztof M. Pawałowski AU - Jan Pulikowski TI - Smooth Actions of $p$-Toral Groups on $\mathbb Z$-Acyclic Manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 283 EP - 290 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a14/ LA - ru ID - TM_2019_305_a14 ER -
%0 Journal Article %A Krzysztof M. Pawałowski %A Jan Pulikowski %T Smooth Actions of $p$-Toral Groups on $\mathbb Z$-Acyclic Manifolds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 283-290 %V 305 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_305_a14/ %G ru %F TM_2019_305_a14
Krzysztof M. Pawałowski; Jan Pulikowski. Smooth Actions of $p$-Toral Groups on $\mathbb Z$-Acyclic Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 283-290. http://geodesic.mathdoc.fr/item/TM_2019_305_a14/
[1] Assadi A.H., Finite group actions on simply-connected manifolds and CW complexes, Mem. AMS, 35, N 257, Amer. Math. Soc., Providence, RI, 1982
[2] Assadi A., Browder W., “On the existence and classification of extensions of actions on submanifolds of disks and spheres”, Trans. Amer. Math. Soc., 291 (1985), 487–502 | DOI | Zbl
[3] M. F. Atiyah, K-Theory, W. A. Benjamin, New York, 1967 | Zbl
[4] G. E. Bredon, Introduction to Compact Transformation Groups, Pure Appl. Math., 46, Academic, New York, 1972 | Zbl
[5] Edmonds A.L., Lee R., “Fixed point sets of group actions on Euclidean space”, Topology, 14 (1975), 339–345 | DOI | Zbl
[6] Jones L., “The converse to the fixed point theorem of P.A. Smith. I”, Ann. Math. Ser. 2, 94 (1971), 52–68 | DOI | Zbl
[7] Oliver R., “Fixed point sets and tangent bundles of actions on disks and Euclidean spaces”, Topology, 35 (1996), 583–615 | DOI | Zbl
[8] Pawałowski K., “Fixed point sets of smooth group actions on disks and Euclidean spaces”, Topology, 28 (1989), 273–289 ; “Corrections”, Topology, 35 (1996), 749–750 | DOI | Zbl | DOI | Zbl
[9] Pawałowski K., “Manifolds as fixed point sets of smooth compact Lie group actions”, Current trends in transformation groups, $K$-Monogr. Math., 7, Kluwer, Dordrecht, 2002, 79–104 | DOI | Zbl