On Structural Stability of Characteristic Nets and the Cauchy Problem for a Tricomi--Cibrario Type Equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 159-166

Voir la notice de l'article provenant de la source Math-Net.Ru

For a generic second-order linear partial differential equation on the plane, the problem of nonlocal normal forms and invariants of a family of its characteristics, as well as the current state of the corresponding theory, is discussed. Potential applications of this theory are demonstrated by the example of solving a special Cauchy problem for a mixed-type equation.
@article{TM_2019_304_a9,
     author = {A. A. Davydov and Yu. A. Kasten},
     title = {On {Structural} {Stability} of {Characteristic} {Nets} and the {Cauchy} {Problem} for a {Tricomi--Cibrario} {Type} {Equation}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {159--166},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_304_a9/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - Yu. A. Kasten
TI  - On Structural Stability of Characteristic Nets and the Cauchy Problem for a Tricomi--Cibrario Type Equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 159
EP  - 166
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_304_a9/
LA  - ru
ID  - TM_2019_304_a9
ER  - 
%0 Journal Article
%A A. A. Davydov
%A Yu. A. Kasten
%T On Structural Stability of Characteristic Nets and the Cauchy Problem for a Tricomi--Cibrario Type Equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 159-166
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_304_a9/
%G ru
%F TM_2019_304_a9
A. A. Davydov; Yu. A. Kasten. On Structural Stability of Characteristic Nets and the Cauchy Problem for a Tricomi--Cibrario Type Equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 159-166. http://geodesic.mathdoc.fr/item/TM_2019_304_a9/