Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 68-82

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence and uniqueness theorems are obtained for a fixed point of a mapping of a complete metric space into itself, that generalize the theorems of L. V. Kantorovich for smooth mappings of Banach spaces. These results are extended to the coincidence points of both ordinary and maultivalued mappings acting in metric spaces.
@article{TM_2019_304_a4,
     author = {A. V. Arutyunov and E. S. Zhukovskiy and S. E. Zhukovskiy},
     title = {Kantorovich's {Fixed} {Point} {Theorem} in {Metric} {Spaces} and {Coincidence} {Points}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {68--82},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_304_a4/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - E. S. Zhukovskiy
AU  - S. E. Zhukovskiy
TI  - Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 68
EP  - 82
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_304_a4/
LA  - ru
ID  - TM_2019_304_a4
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A E. S. Zhukovskiy
%A S. E. Zhukovskiy
%T Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 68-82
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_304_a4/
%G ru
%F TM_2019_304_a4
A. V. Arutyunov; E. S. Zhukovskiy; S. E. Zhukovskiy. Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 68-82. http://geodesic.mathdoc.fr/item/TM_2019_304_a4/