Voir la notice du chapitre de livre
@article{TM_2019_304_a17,
author = {N. N. Subbotina and N. G. Novoselova},
title = {On {Applications} of the {Hamilton{\textendash}Jacobi} {Equations} and {Optimal} {Control} {Theory} to {Problems} of {Chemotherapy} of {Malignant} {Tumors}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {273--284},
year = {2019},
volume = {304},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_304_a17/}
}
TY - JOUR AU - N. N. Subbotina AU - N. G. Novoselova TI - On Applications of the Hamilton–Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 273 EP - 284 VL - 304 UR - http://geodesic.mathdoc.fr/item/TM_2019_304_a17/ LA - ru ID - TM_2019_304_a17 ER -
%0 Journal Article %A N. N. Subbotina %A N. G. Novoselova %T On Applications of the Hamilton–Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 273-284 %V 304 %U http://geodesic.mathdoc.fr/item/TM_2019_304_a17/ %G ru %F TM_2019_304_a17
N. N. Subbotina; N. G. Novoselova. On Applications of the Hamilton–Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 273-284. http://geodesic.mathdoc.fr/item/TM_2019_304_a17/
[1] A. S. Bratus and E. S. Chumerina, “Optimal control synthesis in therapy of solid tumor growth”, Comput. Math. Math. Phys., 48:6 (2008), 892–911 | DOI | MR | Zbl
[2] N. N. Subbotina and N. G. Novoselova, “Optimal result in a control problem with piecewise monotone dynamics”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 23:4 (2017), 265–280 | MR
[3] Novoselova N.G., “Numerical constructions of optimal feedback in models of chemotherapy of a malignant tumor”, J. Bioinf. Comput. Biol., 17:01 (2019), 1940004 | DOI
[4] Subbotina N.N., Novoselova N.G., “The value function in a problem of chemotherapy of a malignant tumor growing according to the Gompertz law”, IFAC-PapersOnLine, 51:32 (2018), 855–860 | DOI
[5] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl
[6] R. Bellman, Dynamic Programming, Princeton Univ. Press, Princeton, NJ, 1957 | MR | Zbl
[7] A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR
[8] N. N. Subbotina, E. A. Kolpakova, T. B. Tokmantsev, and L. G. Shagalova, The Method of Characteristics for Hamilton–Jacobi–Bellman equations, Red.-Izd. Otd. UrO RAN, Yekaterinburg, 2013 (in Russian)
[9] N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 | Zbl
[10] Game-Theoretical Control Problems, Springer, New York, 1988 | Zbl
[11] A. Yu. Goritskii, S. N. Kruzhkov, and G. A. Chechkin, First-Order Partial Differential Equations: Study Guide, TsPI Mekh.-Mat. Fak. Mosk. Gos. Univ., Moscow, 1999 (in Russian)