Pontryagin's Direct Method for Optimization Problems with Differential Inclusion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 257-272

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop Pontryagin's direct variational method, which allows us to obtain necessary conditions in the Mayer extremal problem on a fixed interval under constraints on the trajectories given by a differential inclusion with generally unbounded right-hand side. The established necessary optimality conditions contain the Euler–Lagrange differential inclusion. The results are proved under maximally weak conditions, and very strong statements compared with the known ones are obtained; moreover, admissible velocity sets may be unbounded and nonconvex under a general hypothesis that the right-hand side of the differential inclusion is pseudo-Lipschitz. In the statements, we refine conditions on the Euler–Lagrange differential inclusion, in which neither the Clarke normal cone nor the limiting normal cone is used, as is common in the works of other authors. We also give an example demonstrating the efficiency of the results obtained.
Keywords: variational differential inclusion, adjoint Euler–Lagrange differential inclusion, necessary optimality conditions, derivatives of a multivalued mapping
Mots-clés : tangent cones, pseudo-Lipschitz condition.
@article{TM_2019_304_a16,
     author = {E. S. Polovinkin},
     title = {Pontryagin's {Direct} {Method} for {Optimization} {Problems} with {Differential} {Inclusion}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {257--272},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_304_a16/}
}
TY  - JOUR
AU  - E. S. Polovinkin
TI  - Pontryagin's Direct Method for Optimization Problems with Differential Inclusion
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 257
EP  - 272
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_304_a16/
LA  - ru
ID  - TM_2019_304_a16
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%T Pontryagin's Direct Method for Optimization Problems with Differential Inclusion
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 257-272
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_304_a16/
%G ru
%F TM_2019_304_a16
E. S. Polovinkin. Pontryagin's Direct Method for Optimization Problems with Differential Inclusion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 257-272. http://geodesic.mathdoc.fr/item/TM_2019_304_a16/