Stable Functionals of Neutral-Type Dynamical Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 221-234
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a controlled dynamical system under noisy conditions. Its motion is described by functional differential equations of neutral type in the form of J. Hale. A functional of the motion history is said to be stable with respect to this system if there exists a control strategy that guarantees the monotonicity of this functional for any noise. We study various nonlocal and infinitesimal conditions for the stability of functionals.
Keywords:
differential games optimal control, coinvariant derivatives, directional derivatives, Hamilton–Jacobi equations, stable functionals.
@article{TM_2019_304_a13,
author = {N. Yu. Lukoyanov and A. R. Plaksin},
title = {Stable {Functionals} of {Neutral-Type} {Dynamical} {Systems}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {221--234},
publisher = {mathdoc},
volume = {304},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_304_a13/}
}
TY - JOUR AU - N. Yu. Lukoyanov AU - A. R. Plaksin TI - Stable Functionals of Neutral-Type Dynamical Systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 221 EP - 234 VL - 304 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_304_a13/ LA - ru ID - TM_2019_304_a13 ER -
N. Yu. Lukoyanov; A. R. Plaksin. Stable Functionals of Neutral-Type Dynamical Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 221-234. http://geodesic.mathdoc.fr/item/TM_2019_304_a13/