On a Mathematical Model of Biological Self-Organization
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 174-204

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of two generalized Hutchinson's equations coupled by linear diffusion terms is considered. It is established that for an appropriate choice of parameters, the system has a stable relaxation cycle whose components turn into each other under a certain phase shift. A number of additional properties of this cycle are presented that allow one to interpret it as a self-organization mode.
@article{TM_2019_304_a11,
     author = {A. Yu. Kolesov and N. Kh. Rozov and V. A. Sadovnichii},
     title = {On a {Mathematical} {Model} of {Biological} {Self-Organization}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {174--204},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_304_a11/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
AU  - V. A. Sadovnichii
TI  - On a Mathematical Model of Biological Self-Organization
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 174
EP  - 204
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_304_a11/
LA  - ru
ID  - TM_2019_304_a11
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%A V. A. Sadovnichii
%T On a Mathematical Model of Biological Self-Organization
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 174-204
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_304_a11/
%G ru
%F TM_2019_304_a11
A. Yu. Kolesov; N. Kh. Rozov; V. A. Sadovnichii. On a Mathematical Model of Biological Self-Organization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 174-204. http://geodesic.mathdoc.fr/item/TM_2019_304_a11/