Weight-almost greedy bases
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 120-141
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the notion of a weight-almost greedy basis and show that a basis for a real Banach space is $w$-almost greedy if and only if it is both quasi-greedy and $w$-democratic. We also introduce the notion of a weight-semi-greedy basis and show that a $w$-almost greedy basis is $w$-semi-greedy and that the converse holds if the Banach space has finite cotype.
@article{TM_2018_303_a9,
author = {S. J. Dilworth and D. Kutzarova and V. N. Temlyakov and B. Wallis},
title = {Weight-almost greedy bases},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {120--141},
publisher = {mathdoc},
volume = {303},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a9/}
}
TY - JOUR AU - S. J. Dilworth AU - D. Kutzarova AU - V. N. Temlyakov AU - B. Wallis TI - Weight-almost greedy bases JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 120 EP - 141 VL - 303 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_303_a9/ LA - ru ID - TM_2018_303_a9 ER -
S. J. Dilworth; D. Kutzarova; V. N. Temlyakov; B. Wallis. Weight-almost greedy bases. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 120-141. http://geodesic.mathdoc.fr/item/TM_2018_303_a9/