On the size of the quotient of two subsets of positive integers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 279-287
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a nontrivial lower bound for the size of the set $A/B$, where $A$ and $B$ are subsets of the interval $[1,Q]$.
Keywords:
integers, divisibility, energy of sets.
@article{TM_2018_303_a19,
author = {Yu. N. Shteinikov},
title = {On the size of the quotient of two subsets of positive integers},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {279--287},
publisher = {mathdoc},
volume = {303},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a19/}
}
Yu. N. Shteinikov. On the size of the quotient of two subsets of positive integers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 279-287. http://geodesic.mathdoc.fr/item/TM_2018_303_a19/