On the size of the quotient of two subsets of positive integers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 279-287

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a nontrivial lower bound for the size of the set $A/B$, where $A$ and $B$ are subsets of the interval $[1,Q]$.
Keywords: integers, divisibility, energy of sets.
@article{TM_2018_303_a19,
     author = {Yu. N. Shteinikov},
     title = {On the size of the quotient of two subsets of positive integers},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {279--287},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a19/}
}
TY  - JOUR
AU  - Yu. N. Shteinikov
TI  - On the size of the quotient of two subsets of positive integers
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 279
EP  - 287
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a19/
LA  - ru
ID  - TM_2018_303_a19
ER  - 
%0 Journal Article
%A Yu. N. Shteinikov
%T On the size of the quotient of two subsets of positive integers
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 279-287
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a19/
%G ru
%F TM_2018_303_a19
Yu. N. Shteinikov. On the size of the quotient of two subsets of positive integers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 279-287. http://geodesic.mathdoc.fr/item/TM_2018_303_a19/