Delone sets in $\mathbb R^3$ with $2R$-regularity conditions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 176-201

Voir la notice de l'article provenant de la source Math-Net.Ru

A regular system is the orbit of a point with respect to a crystallographic group. The central problem of the local theory of regular systems is to determine the value of the regularity radius, i.e., the radius of neighborhoods/clusters whose identity in a Delone $(r,R)$‑set guarantees its regularity. In this paper, conditions are described under which the regularity of a Delone set in three-dimensional Euclidean space follows from the pairwise congruence of small clusters of radius $2R$. Combined with the analysis of one particular case, this result also implies the proof of the "$10R$-theorem," which states that the congruence of clusters of radius $10R$ in a Delone set implies the regularity of this set.
Keywords: Delone set, crystallographic group, regular system, regularity radius, cluster.
@article{TM_2018_302_a7,
     author = {N. P. Dolbilin},
     title = {Delone sets in $\mathbb R^3$ with $2R$-regularity conditions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {176--201},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a7/}
}
TY  - JOUR
AU  - N. P. Dolbilin
TI  - Delone sets in $\mathbb R^3$ with $2R$-regularity conditions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 176
EP  - 201
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a7/
LA  - ru
ID  - TM_2018_302_a7
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%T Delone sets in $\mathbb R^3$ with $2R$-regularity conditions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 176-201
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a7/
%G ru
%F TM_2018_302_a7
N. P. Dolbilin. Delone sets in $\mathbb R^3$ with $2R$-regularity conditions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 176-201. http://geodesic.mathdoc.fr/item/TM_2018_302_a7/