Dehn invariant and scissors congruence of flexible polyhedra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 143-160
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the Dehn invariant of any flexible polyhedron in $n$-dimensional Euclidean space, where $n\ge 3$, is constant during the flexion. For $n=3$ and $4$ this implies that any flexible polyhedron remains scissors congruent to itself during the flexion. This proves the Strong Bellows Conjecture posed by R. Connelly in 1979. It was believed that this conjecture was disproved by V. Alexandrov and R. Connelly in 2009. However, we find an error in their counterexample. Further, we show that the Dehn invariant of a flexible polyhedron in the $n$‑dimensional sphere or $n$-dimensional Lobachevsky space, where $n\ge 3$, is constant during the flexion whenever this polyhedron satisfies the usual Bellows Conjecture, i.e., whenever its volume is constant during every flexion of it. Using previous results of the first named author, we deduce that the Dehn invariant is constant during the flexion for every bounded flexible polyhedron in odd-dimensional Lobachevsky space and for every flexible polyhedron with sufficiently small edge lengths in any space of constant curvature of dimension at least $3$.
Keywords:
flexible polyhedron, Dehn invariant, scissors congruence, strong bellows conjecture, analytic continuation.
@article{TM_2018_302_a5,
author = {Alexander A. Gaifullin and Leonid S. Ignashchenko},
title = {Dehn invariant and scissors congruence of flexible polyhedra},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {143--160},
publisher = {mathdoc},
volume = {302},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a5/}
}
TY - JOUR AU - Alexander A. Gaifullin AU - Leonid S. Ignashchenko TI - Dehn invariant and scissors congruence of flexible polyhedra JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 143 EP - 160 VL - 302 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_302_a5/ LA - ru ID - TM_2018_302_a5 ER -
%0 Journal Article %A Alexander A. Gaifullin %A Leonid S. Ignashchenko %T Dehn invariant and scissors congruence of flexible polyhedra %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2018 %P 143-160 %V 302 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2018_302_a5/ %G ru %F TM_2018_302_a5
Alexander A. Gaifullin; Leonid S. Ignashchenko. Dehn invariant and scissors congruence of flexible polyhedra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 143-160. http://geodesic.mathdoc.fr/item/TM_2018_302_a5/