Integrability of exceptional hydrodynamic-type systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 343-353

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-diagonalizable hydrodynamic-type systems integrable by the extended hodograph method. We restrict the analysis to non-diagonalizable hydrodynamic reductions of the three-dimensional Mikhalev equation. We show that families of these hydrodynamic-type systems are reducible to the heat hierarchy. Then we construct new particular explicit solutions for the Mikhalev equation.
Keywords: integrable quasilinear systems of first order, linearly degenerate systems of first order, characteristic velocities, extended hodograph method.
@article{TM_2018_302_a16,
     author = {Maxim V. Pavlov},
     title = {Integrability of exceptional hydrodynamic-type systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {343--353},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a16/}
}
TY  - JOUR
AU  - Maxim V. Pavlov
TI  - Integrability of exceptional hydrodynamic-type systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 343
EP  - 353
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a16/
LA  - ru
ID  - TM_2018_302_a16
ER  - 
%0 Journal Article
%A Maxim V. Pavlov
%T Integrability of exceptional hydrodynamic-type systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 343-353
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a16/
%G ru
%F TM_2018_302_a16
Maxim V. Pavlov. Integrability of exceptional hydrodynamic-type systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 343-353. http://geodesic.mathdoc.fr/item/TM_2018_302_a16/