Chern--Simons action and disclinations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 124-143

Voir la notice de l'article provenant de la source Math-Net.Ru

We review the main properties of the Chern–Simons and Hilbert–Einstein actions on a three-dimensional manifold with Riemannian metric and torsion. We show a connection between these actions that is based on the gauge model for the inhomogeneous rotation group. The exact solution of the Euler–Lagrange equations is found for the Chern–Simons action with the linear source. This solution is proved to describe one straight linear disclination in the geometric theory of defects.
@article{TM_2018_301_a9,
     author = {M. O. Katanaev},
     title = {Chern--Simons action and disclinations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {124--143},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a9/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Chern--Simons action and disclinations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 124
EP  - 143
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a9/
LA  - ru
ID  - TM_2018_301_a9
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Chern--Simons action and disclinations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 124-143
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a9/
%G ru
%F TM_2018_301_a9
M. O. Katanaev. Chern--Simons action and disclinations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 124-143. http://geodesic.mathdoc.fr/item/TM_2018_301_a9/