Conditions for the absence of local extrema in problems of quantum coherent control
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 119-123

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a terminal control problem for quantum systems which is formulated as the problem of maximizing the objective functional at some fixed finite time. Within the framework of this problem, we discuss known results on the local maxima of the objective functional that are not global. This question is important for quantum control, since such local maxima could make it difficult to find the global maximum by local search in numerical optimization or under laboratory conditions.
@article{TM_2018_301_a8,
     author = {N. B. Il'in and A. N. Pechen},
     title = {Conditions for the absence of local extrema in problems of quantum coherent control},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {119--123},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a8/}
}
TY  - JOUR
AU  - N. B. Il'in
AU  - A. N. Pechen
TI  - Conditions for the absence of local extrema in problems of quantum coherent control
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 119
EP  - 123
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a8/
LA  - ru
ID  - TM_2018_301_a8
ER  - 
%0 Journal Article
%A N. B. Il'in
%A A. N. Pechen
%T Conditions for the absence of local extrema in problems of quantum coherent control
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 119-123
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a8/
%G ru
%F TM_2018_301_a8
N. B. Il'in; A. N. Pechen. Conditions for the absence of local extrema in problems of quantum coherent control. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 119-123. http://geodesic.mathdoc.fr/item/TM_2018_301_a8/