Large-time behavior of an infinite system of harmonic oscillators on the half-line
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 91-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial–boundary value problem for an infinite one-dimensional chain of harmonic oscillators on the half-line is considered. The large time behavior of solutions is studied and dispersive bounds are derived.
Keywords: one-dimensional system of harmonic oscillators on the half-line, initial–boundary value problem, dispersive estimates.
Mots-clés : Fourier–Laplace transform, Puiseux expansion
@article{TM_2018_301_a6,
     author = {T. V. Dudnikova},
     title = {Large-time behavior of an infinite system of harmonic oscillators on the half-line},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {91--107},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a6/}
}
TY  - JOUR
AU  - T. V. Dudnikova
TI  - Large-time behavior of an infinite system of harmonic oscillators on the half-line
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 91
EP  - 107
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a6/
LA  - ru
ID  - TM_2018_301_a6
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%T Large-time behavior of an infinite system of harmonic oscillators on the half-line
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 91-107
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a6/
%G ru
%F TM_2018_301_a6
T. V. Dudnikova. Large-time behavior of an infinite system of harmonic oscillators on the half-line. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 91-107. http://geodesic.mathdoc.fr/item/TM_2018_301_a6/

[1] Cuccagna S., “$L^p$ continuity of wave operators in $\mathbb Z$”, J. Math. Anal. Appl., 354:2 (2009), 594–605 | DOI | MR | Zbl

[2] Dudnikova T. V., “On the asymptotical normality of statistical solutions for harmonic crystals in half-space”, Russ. J. Math. Phys., 15:4 (2008), 460–472 | DOI | MR | Zbl

[3] T. V. Dudnikova, “Long-time asymptotics of solutions to a Hamiltonian system on a lattice”, J. Math. Sci., 219:1 (2016), 69–85 | DOI | MR | Zbl

[4] Dudnikova T. V., “On convergence to equilibrium for one-dimensional chain of harmonic oscillators on the half-line”, J. Math. Phys., 58:4 (2017), 043301 | DOI | MR | Zbl

[5] Dudnikova T. V., Komech A. I., Spohn H., “On the convergence to statistical equilibrium for harmonic crystals”, J. Math. Phys., 44:6 (2003), 2596–2620 | DOI | MR | Zbl

[6] Islami H., Vainberg B., “Large time behavior of solutions to difference wave operators”, Commun. Partial Diff. Eqns., 31:3 (2006), 397–416 | DOI | MR | Zbl

[7] Jensen A., Kato T., “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46 (1979), 583–611 | DOI | MR | Zbl

[8] Komech A. I., Kopylova E. A., Kunze M., “Dispersive estimates for 1D discrete Schrödinger and Klein–Gordon equations”, Appl. Anal., 85:12 (2006), 1487–1508 | DOI | MR | Zbl

[9] Pelinosky D. E., Stefanov A., “On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension”, J. Math. Phys., 49:11 (2008), 113501 | DOI | MR

[10] Shaban W., Vainberg B., “Radiation conditions for the difference Schrödinger operators”, Appl. Anal., 80:3–4 (2001), 525–556 | DOI | MR | Zbl

[11] B. R. Vainberg, “Behavior for large time of solutions of the Klein–Gordon equation”, Trans. Moscow Math. Soc., 30, 1976, 139–158 | MR | Zbl | Zbl