A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 53-73

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the boundary behavior of solutions to a second-order elliptic equation. A criterion is established for the existence in $L_p$, $p>1$, of a boundary value of a solution to a homogeneous equation in the self-adjoint form without lower order terms. Under the conditions of this criterion, the solution belongs to the space of $(n-1)$-dimensionally continuous functions; thus, the boundary value is taken in a much stronger sense. Moreover, for such a solution to the Dirichlet problem, estimates for the nontangential maximal function and for an analog of the Lusin area integral hold.
Mots-clés : elliptic equation
Keywords: boundary value, Dirichlet problem, Lusin area integral.
@article{TM_2018_301_a4,
     author = {A. K. Gushchin},
     title = {A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {53--73},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a4/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 53
EP  - 73
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a4/
LA  - ru
ID  - TM_2018_301_a4
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 53-73
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a4/
%G ru
%F TM_2018_301_a4
A. K. Gushchin. A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 53-73. http://geodesic.mathdoc.fr/item/TM_2018_301_a4/