On the supports of vector equilibrium measures in the Angelesco problem with nested intervals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 192-208

Voir la notice de l'article provenant de la source Math-Net.Ru

A vector logarithmic-potential equilibrium problem with the Angelesco interaction matrix is considered for two nested intervals with a common endpoint. The ratio of the lengths of the intervals is a parameter of the problem, and another parameter is the ratio of the masses of the components of the vector equilibrium measure. Two cases are distinguished, depending on the relations between the parameters. In the first case, the equilibrium measure is described by a meromorphic function on a three-sheeted Riemann surface of genus zero, and the supports of the components do not overlap and are connected. In the second case, a solution to the equilibrium problem is found in terms of a meromorphic function on a six-sheeted surface of genus one, and the supports overlap and are not connected.
@article{TM_2018_301_a13,
     author = {V. G. Lysov and D. N. Tulyakov},
     title = {On the supports of vector equilibrium measures in the {Angelesco} problem with nested intervals},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {192--208},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a13/}
}
TY  - JOUR
AU  - V. G. Lysov
AU  - D. N. Tulyakov
TI  - On the supports of vector equilibrium measures in the Angelesco problem with nested intervals
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 192
EP  - 208
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a13/
LA  - ru
ID  - TM_2018_301_a13
ER  - 
%0 Journal Article
%A V. G. Lysov
%A D. N. Tulyakov
%T On the supports of vector equilibrium measures in the Angelesco problem with nested intervals
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 192-208
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a13/
%G ru
%F TM_2018_301_a13
V. G. Lysov; D. N. Tulyakov. On the supports of vector equilibrium measures in the Angelesco problem with nested intervals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 192-208. http://geodesic.mathdoc.fr/item/TM_2018_301_a13/