Quantum transport in degenerate systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 144-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

Transport in nonequilibrium degenerate quantum systems is investigated. The transfer rate depends on the parameters of the system. In this paper we investigate the dependence of the flow (transfer rate) on the angle between “bright” vectors (which define the interaction of the system with the environment). We show that in some approximation for the system under investigation the flow is proportional to the cosine squared of the angle between the “bright” vectors. Earlier the author has shown that in this degenerate quantum system excitation of nondecaying quantum “dark” states is possible; moreover, the effectiveness of this process is proportional to the sine squared of the angle between the “bright” vectors (this phenomenon was discussed as a possible model of excitation of quantum coherence in quantum photosynthesis). Thus quantum transport and excitation of dark states are competing processes; “dark” states can be considered as a result of leakage of quantum states in a quantum thermodynamic machine which performs the quantum transport.
@article{TM_2018_301_a10,
     author = {S. V. Kozyrev},
     title = {Quantum transport in degenerate systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {144--154},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a10/}
}
TY  - JOUR
AU  - S. V. Kozyrev
TI  - Quantum transport in degenerate systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 144
EP  - 154
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a10/
LA  - ru
ID  - TM_2018_301_a10
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%T Quantum transport in degenerate systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 144-154
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a10/
%G ru
%F TM_2018_301_a10
S. V. Kozyrev. Quantum transport in degenerate systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 144-154. http://geodesic.mathdoc.fr/item/TM_2018_301_a10/

[1] Abasto D. F., Mohseni M., Lloyd S., Zanardi P., “Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer”, Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci., 370 (2012), 3750–3770 | DOI

[2] Accardi L., Imafuku K., Kozyrev S. V., “Interaction of 3-level atom with radiation”, Opt. Spectrosc., 94:6 (2003), 904–910 | DOI

[3] Accardi L., Kozyrev S., “Lectures on quantum interacting particle systems”, Quantum interacting particle systems, Lecture notes of the Volterra–CIRM Int. Sch. (Trento, 2000), QP–PQ: Quantum Probab. White Noise Anal., 14, World Scientific, Hackensack, NJ, 2002, 1–195 | DOI | MR

[4] Accardi L., Kozyrev S. V., Pechen A. N., “Coherent quantum control of $\Lambda $-atoms through the stochastic limit”, Quantum information and computing, QP–PQ: Quantum Probab. White Noise Anal., 19, eds. L. Accardi, M. Ohya, N. Watanabe, World Scientific, Hackensack, NJ, 2006, 1–17 ; arXiv: quant-ph/0403100 | Zbl

[5] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl

[6] Amosov G. G., Filippov S. N., “Spectral properties of reduced fermionic density operators and parity superselection rule”, Quantum Inf. Process., 16:1 (2017), 2 | DOI | MR | Zbl

[7] I. Ya. Aref'eva, “Formation time of quark–gluon plasma in heavy-ion collisions in the holographic shock wave model”, Theor. Math. Phys., 184:3 (2015), 1239–1255 ; arXiv: 1503.02185[hep-th] | DOI | DOI | MR | Zbl

[8] Aref'eva I., “Multiplicity and thermalization time in heavy-ions collisions”, EPJ Web Conf., 125 (2016), 01007 | DOI

[9] Aref'eva I. Ya., Khramtsov M. A., “AdS/CFT prescription for angle-deficit space and winding geodesics”, J. High Energy Phys., 2016:4 (2016), 121 ; arXiv: 1601.02008[hep-th] | MR

[10] Aref'eva I., Volovich I., Holographic photosynthesis, E-print, 2016, arXiv: 1603.09107[hep-th]

[11] I. Ya. Aref'eva, I. V. Volovich, S. V. Kozyrev, “Stochastic limit method and interference in quantum many-particle systems”, Theor. Math. Phys., 183:3 (2015), 782–799 | DOI | DOI | MR | Zbl

[12] Chan C.-K., Lin G.-D., Yelin S. F., Lukin M. D., “Quantum interference between independent reservoirs in open quantum systems”, Phys. Rev. A, 89:4 (2014), 042117 | DOI

[13] Dicke R. H., “Coherence in spontaneous radiation processes”, Phys. Rev., 93 (1954), 99–110 | DOI | Zbl

[14] Engel G. S., Calhoun T. R., Read E. L., Ahn T.-K., Mančal T., Cheng Y.-C., Blankenship R. E., Fleming G. R., “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems”, Nature, 446 (2007), 782–786 | DOI

[15] Fleischhauer M., Lukin M. D., “Dark-state polaritons in electromagnetically induced transparency”, Phys. Rev. Lett., 84:22 (2000), 5094–5097 ; arXiv: quant-ph/0001094 | DOI

[16] A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory”, Russ. Math. Surv., 70:2 (2015), 331–367 | DOI | DOI | MR | Zbl

[17] S. V. Kozyrev, “Ultrametricity in the theory of complex systems”, Theor. Math. Phys., 185:2 (2015), 1665–1677 | DOI | DOI | MR | Zbl

[18] Kozyrev S. V., Mironov A. A., Teretenkov A. E., Volovich I. V., “Flows in non-equilibrium quantum systems and quantum photosynthesis”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:4 (2017), 1750021 ; arXiv: 1612.00213[quant-ph] | DOI | MR | Zbl

[19] Lloyd S., Mohseni M., “Symmetry-enhanced supertransfer of delocalized quantum states”, New J. Phys., 12:7 (2010), 075020 ; arXiv: 1005.2579[quant-ph] | DOI

[20] Mohseni M., Rebentrost P., Lloyd S., Aspuru-Guzik A., “Environment-assisted quantum walks in photosynthetic energy transfer”, J. Chem. Phys., 129:17 (2008), 174106 | DOI

[21] Monshouwer R., Abrahamsson M., van Mourik F., van Grondelle R., “Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems”, J. Phys. Chem. B, 101:37 (1997), 7241–7248 | DOI

[22] Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, New York, 2011 | MR | Zbl

[23] Olaya-Castro A., Lee C. F., Olsen F. F., Johnson N. F., “Efficiency of energy transfer in a light-harvesting system under quantum coherence”, Phys. Rev. B, 78:8 (2008), 085115 | DOI

[24] A. N. Pechen, N. B. Il'in, “Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times”, Proc. Steklov Inst. Math., 289 (2015), 213–220 | DOI | MR | Zbl

[25] A. N. Pechen, N. B. Il'in, “On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements”, Proc. Steklov Inst. Math., 294 (2016), 233–240 | DOI | DOI | MR | MR | Zbl

[26] Pechen A., Il'in N., “Control landscape for ultrafast manipulation by a qubit”, J. Phys. A: Math. Theor., 50:7 (2017), 075301 | DOI | MR | Zbl

[27] Pechen A., Trushechkin A., “Measurement-assisted Landau–Zener transitions”, Phys. Rev. A, 91:5 (2015), 052316 | DOI

[28] M. Mohseni, Y. Omar, G. S. Engel, M. B. Plenio (eds.), Quantum effects in biology, Cambridge Univ. Press, Cambridge, 2014

[29] Scholes G. D., Fleming G. R., Olaya-Castro A., van Grondelle R., “Lessons from nature about solar light harvesting”, Nature Chem., 3 (2011), 763–774 | DOI

[30] Scully M. O., Zubairy M. S., Quantum optics, Cambridge Univ. Press, Cambridge, 1997

[31] M. E. Shirokov, “On quantum zero-error capacity”, Russ. Math. Surv., 70:1 (2015), 176–178 | DOI | DOI | MR | Zbl

[32] Trushechkin A. S., Volovich I. V., “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, Europhys. Lett., 113:3 (2016), 30005 | DOI

[33] Volovich I. V., “Models of quantum computers and decoherence problem”, Quantum information, Proc. 1st Int. Conf. (Nagoya, 1997), World Scientific, Singapore, 1999, 211–224 ; arXiv: quant-ph/9902055 | MR | Zbl

[34] Volovich I. V., “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light”, Phys. Lett. A, 380:1–2 (2016), 56–58 | DOI | MR | Zbl

[35] I. V. Volovich, S. V. Kozyrev, “Manipulation of states of a degenerate quantum system”, Proc. Steklov Inst. Math., 294 (2016), 241–251 | DOI | DOI | MR | Zbl