Control of detonation combustion in a~high-velocity gas mixture flow
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 123-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of a detailed kinetic mechanism of chemical interaction, we study detonation combustion of a stoichiometric hydrogen–air mixture flowing at a supersonic velocity into a plane symmetric channel with narrowing cross section (constriction). The goal of the study is to determine conditions that guarantee the formation of a thrust-producing flow with a stabilized detonation wave in the channel. With a view to increasing the efficiency of detonation combustion of the gas mixture, we analyze the effect of variations of the inflow Mach number, the concentration of inert particles added to the combustible mixture flowing into the channel, and the geometric parameters of the channel on the position of a stabilized detonation wave in the flow. We also study the possibility of formation without energy expenditure of a thrust-producing flow with a stabilized detonation wave in a channel with narrowing cross section.
@article{TM_2018_300_a8,
     author = {V. A. Levin and T. A. Zhuravskaya},
     title = {Control of detonation combustion in a~high-velocity gas mixture flow},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {123--134},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a8/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - T. A. Zhuravskaya
TI  - Control of detonation combustion in a~high-velocity gas mixture flow
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 123
EP  - 134
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a8/
LA  - ru
ID  - TM_2018_300_a8
ER  - 
%0 Journal Article
%A V. A. Levin
%A T. A. Zhuravskaya
%T Control of detonation combustion in a~high-velocity gas mixture flow
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 123-134
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a8/
%G ru
%F TM_2018_300_a8
V. A. Levin; T. A. Zhuravskaya. Control of detonation combustion in a~high-velocity gas mixture flow. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 123-134. http://geodesic.mathdoc.fr/item/TM_2018_300_a8/

[1] Bedarev I. A., Fedorov A. V., “Mathematical modeling of the detonation wave and inert particles interaction at the macro and micro levels”, J. Phys.: Conf. Ser., 894:1 (2017), 012008 | DOI

[2] G. G. Chernyi, Unsteady Gas Motions in Channels with Permeable Walls. On Shock-Wave Stability in Channels, Tr. TsIAM, 244, TsIAM, Moscow, 1953

[3] Fan H. Y., Lu F. K., “Numerical modelling of oblique shock and detonation waves induced in a wedged channel”, Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng., 222:5 (2008), 687–703 | DOI

[4] A. N. Kraiko (ed.), Gas Dynamics: Selected Studies, v. 1, Fizmatlit, Moscow, 2005 (in Russian)

[5] P. Yu. Georgievskiy, V. A. Levin, O. G. Sutyrin, “Shock focusing upon interaction of a shock with a cylindrical dust cloud”, Tech. Phys. Lett., 42:9 (2016), 936–939 | DOI

[6] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics, Nauka, Moscow, 1976 (in Russian) | MR

[7] Lee J. H. S., The detonation phenomenon, Cambridge Univ. Press, Cambridge, 2008

[8] V. A. Levin, I. S. Manuilovich, V. V. Markov, “Excitation and quenching of detonation in gases”, J. Eng. Phys. Thermophys., 83 (2010), 1244–1274 | DOI

[9] V. A. Levin, T. A. Zhuravskaya, “Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel”, Tech. Phys. Lett., 43:3 (2017), 316–319 | DOI | MR

[10] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, CRC Press, Boca Raton, FL, 1993 | MR | MR

[11] R. I. Soloukhin, Shock Waves and Detonations in Gases, Mono Book, Baltimore, 1966

[12] A. M. Starik, N. S. Titova, A. S. Sharipov, V. E. Kozlov, “Syngas oxidation mechanism”, Combust. Explos. Shock Waves, 46 (2010), 491–506 | DOI

[13] L. V. Gurvich, I. V. Veyts (eds.), Thermodynamic Properties of Individual Substances, v. 1, Part 2, Hemisphere, New York, 1989

[14] Trotsyuk A. V., Kudryavtsev A. N., Ivanov M. S., “Numerical investigations of detonation waves in supersonic steady flows”, Pulse and continuous detonation propulsion, eds. G. Roy, S. Frolov, Torus Press, Moscow, 2006, 125–138

[15] Yu. V. Tunik, “Numerical modeling of detonation combustion of hydrogen–air mixtures in a convergent–divergent nozzle”, Fluid Dyn., 45 (2010), 264–270 | DOI | MR

[16] A. A. Vasil'ev, A. V. Pinaev, A. A. Trubitsyn, A. Yu. Grachev, A. V. Trotsyuk, P. A. Fomin, A. V. Trilis, “What is burning in coal mines: Methane or coal dust?”, Combust. Explos. Shock Waves, 53 (2017), 8–14 | DOI

[17] A. A. Vasil'ev, V. I. Zvegintsev, D. G. Nalivaichenko, “Detonation waves in a reactive supersonic flow”, Combust. Explos. Shock Waves, 42 (2006), 568–581 | DOI

[18] Vl. Voevodin, S. Zhumatii, S. Sobolev, A. Antonov, P. Bryzgalov, D. Nikitenko, K. Stefanov, Vad. Voevodin, “Practice of the ‘Lomonosov’ Supercomputer”, Otkrytye Sistemy. SUBD, 2012, no. 7, 36–39

[19] T. A. Zhuravskaya, V. A. Levin, “Investigation of certain techniques for stabilizing detonation waves in a supersonic flow”, Fluid Dyn., 47 (2012), 793–801 | DOI | MR

[20] T. A. Zhuravskaya, V. A. Levin, “Stabilization of detonation combustion of a high-velocity combustible gas mixture flow in a plane channel”, Fluid Dyn., 50 (2015), 283–293 | DOI

[21] T. A. Zhuravskaya, V. A. Levin, “Stability of gas mixture flow with a stabilized detonation wave in a plane channel with a constriction”, Fluid Dyn., 51 (2016), 544–551 | DOI | DOI | MR