Evolution of a~condensation surface in a~porous medium near the instability threshold
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 86-94

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the dynamics of a narrow band of weakly unstable and weakly nonlinear perturbations of a plane phase transition surface separating regions of soil saturated with water and with humid air; during transition to instability, the existing stable position of the phase transition surface is assumed to be sufficiently close to another phase transition surface that arises as a result of a turning point bifurcation. We show that such perturbations are described by a Kolmogorov–Petrovskii–Piskunov type equation.
@article{TM_2018_300_a5,
     author = {A. T. Il'ichev and G. G. Tsypkin},
     title = {Evolution of a~condensation surface in a~porous medium near the instability threshold},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a5/}
}
TY  - JOUR
AU  - A. T. Il'ichev
AU  - G. G. Tsypkin
TI  - Evolution of a~condensation surface in a~porous medium near the instability threshold
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 86
EP  - 94
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a5/
LA  - ru
ID  - TM_2018_300_a5
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%A G. G. Tsypkin
%T Evolution of a~condensation surface in a~porous medium near the instability threshold
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 86-94
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a5/
%G ru
%F TM_2018_300_a5
A. T. Il'ichev; G. G. Tsypkin. Evolution of a~condensation surface in a~porous medium near the instability threshold. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 86-94. http://geodesic.mathdoc.fr/item/TM_2018_300_a5/