Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_300_a18, author = {M. E. Eglit and A. E. Yakubenko and J. S. Zayko}, title = {Mathematical modeling of slope flows of {non-Newtonian} media}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {229--239}, publisher = {mathdoc}, volume = {300}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a18/} }
TY - JOUR AU - M. E. Eglit AU - A. E. Yakubenko AU - J. S. Zayko TI - Mathematical modeling of slope flows of non-Newtonian media JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 229 EP - 239 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_300_a18/ LA - ru ID - TM_2018_300_a18 ER -
%0 Journal Article %A M. E. Eglit %A A. E. Yakubenko %A J. S. Zayko %T Mathematical modeling of slope flows of non-Newtonian media %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2018 %P 229-239 %V 300 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2018_300_a18/ %G ru %F TM_2018_300_a18
M. E. Eglit; A. E. Yakubenko; J. S. Zayko. Mathematical modeling of slope flows of non-Newtonian media. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 229-239. http://geodesic.mathdoc.fr/item/TM_2018_300_a18/
[1] V. P. Blagoveshchensky, M. E. Eglit, V. V. Zhdanov, B. B. Askarbekov, “Calibration of snow avalanche mathematical models using the data of real avalanches in the Ile (Zailiyskiy) Alatau Range”, Led Sneg, 57:2 (2017), 213–220
[2] Bovet E., Chiaia B., Preziosi L., “A new model for snow avalanche dynamics based on non-Newtonian fluids”, Meccanica, 45:6 (2010), 753–765 | DOI | MR
[3] Chambon G., Ghemmour A., Naaim M., “Experimental investigation of viscoplastic free-surface flows in a steady uniform regime”, J. Fluid Mech., 754 (2014), 332–364 | DOI
[4] Chhabra R. P., Richardson J. F., Non-Newtonian flow and applied rheology: Engineering applications, Elsevier, Oxford, 2008
[5] Coussot P., Mudflow rheology and dynamics, A. A. Balkema, Rotterdam, 1997
[6] Dent J. D., Lang T. E., “Modeling of snow flow”, J. Glaciol., 26:94 (1980), 131–140 | DOI
[7] Eglit M. E., “Some mathematical models of snow avalanches”, Advances in the mechanics and the flow of granular materials, v. 2, ed. M. Shahinpoor, Trans Tech Publ., Clausthal-Zellerfeld, 1983, 577–588
[8] Eglit M. E., Demidov K. S., “Mathematical modeling of snow entrainment in avalanche motion”, Cold Reg. Sci. Technol., 43:1–2 (2005), 10–23 | DOI
[9] Eglit M. E., Yakubenko A. E., “Numerical modeling of slope flows entraining bottom material”, Cold Reg. Sci. Technol., 108 (2014), 139–148 | DOI
[10] M. E. Eglit, A. E. Yakubenko, “Effect of the bottom material capture and the non-Newtonian rheology on the dynamics of turbulent downslope flows”, Fluid Dyn., 51 (2016), 299–310 | DOI | DOI | MR
[11] Eglit M. E., Yakubenko A. E., Yakubenko T. A., “Influence of bed material entrainment and non-Newtonian rheology on turbulent geophysical flows dynamics. Numerical study”, J. Phys.: Conf. Ser., 894:1 (2017), 012111 | DOI
[12] Gavrilov A. A., Rudyak V. Ya., “A model of averaged molecular viscosity for turbulent flow of non-Newtonian fluids”, J. Sib. Fed. Univ. Math. Phys., 7:1 (2014), 46–57
[13] Huang X., García M. H., “A Herschel–Bulkley model for mud flow down a slope”, J. Fluid Mech., 374 (1998), 305–333 | DOI
[14] Issler D., Pastor Pérez M., “Interplay of entrainment and rheology in snow avalanches: A numerical study”, Ann. Glaciol., 52:58 (2011), 143–147 | DOI
[15] Kern M. A., Tiefenbacher F., McElwaine J. N., “The rheology of snow in large chute flows”, Cold Reg. Sci. Technol., 39:2–3 (2004), 181–192 | DOI
[16] Khorshidi J., Niazi S., Davari H., Mahmeli Abyaneh M., Mahmoodzadeh A., “Turbulent modeling for non-Newtonian fluid in an eccentric annulus”, Can. J. Pure Appl. Sci., 7:2 (2013), 2425–2430
[17] Kulibaba V. S., Eglit M. E., “Numerical modeling of an avalanche impact against an obstacle with account of snow compressibility”, Ann. Glaciol., 49 (2008), 27–32 | DOI
[18] V. G. Lushchik, A. A. Pavel'ev, A. E. Yakubenko, “Three-parameter model of shear turbulence”, Fluid Dyn., 13 (1978), 350–360 | DOI
[19] Nakamura M., Sawada T., “A $k$–$\varepsilon $ model for the turbulent analysis of Bingham plastic fluid”, Trans. Jpn. Soc. Mech. Eng. B, 52:479 (1986), 2544–2552 | DOI
[20] Nishimura K., Maeno N., “Contribution of viscous forces to avalanche dynamics”, Ann. Glaciol., 13 (1989), 202–206 | DOI
[21] D. I. Romanova, “3D avalanche flow modeling using OpenFOAM”, Tr. Inst. Sist. Program. Ross. Akad. Nauk, 29, no. 1, 2017, 85–100
[22] Sovilla B., Burlando P., Bartelt P., “Field experiments and numerical modeling of mass entrainment in snow avalanches”, J. Geophys. Res., 111:F3 (2006), Pap. F03007
[23] Yu. S. Zaiko, “Numerical modeling of downslope flows of different rheology”, Fluid Dyn., 51 (2016), 443–450 | DOI | DOI | MR