Flow structure behind a~shock wave in a~channel with periodically arranged obstacles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 216-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the propagation of a pressure wave in a rectangular channel with periodically arranged obstacles and show that a flow corresponding to a discontinuity structure may exist in such a channel. The discontinuity structure is a complex consisting of a leading shock wave and a zone in which pressure relaxation occurs. The pressure at the end of the relaxation zone can be much higher than the pressure immediately behind the gas-dynamic shock. We derive an approximate formula that relates the gas parameters behind the discontinuity structure to the average velocity of the structure. The calculations of the pressure, velocity, and density of the gas behind the structure that are based on the average velocity of the structure agree well with the results of gas-dynamic calculations. The approximate dependences obtained allow us to estimate the minimum pressure at which there exists a flow with a discontinuity structure. This estimate is confirmed by gas-dynamic calculations.
Keywords: attenuation of a shock wave, channel with obstacles, traveling wave, interaction of a shock/blast wave with barriers.
@article{TM_2018_300_a17,
     author = {V. A. Shargatov and A. P. Chugainova and S. V. Gorkunov and S. I. Sumskoi},
     title = {Flow structure behind a~shock wave in a~channel with periodically arranged obstacles},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {216--228},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a17/}
}
TY  - JOUR
AU  - V. A. Shargatov
AU  - A. P. Chugainova
AU  - S. V. Gorkunov
AU  - S. I. Sumskoi
TI  - Flow structure behind a~shock wave in a~channel with periodically arranged obstacles
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 216
EP  - 228
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a17/
LA  - ru
ID  - TM_2018_300_a17
ER  - 
%0 Journal Article
%A V. A. Shargatov
%A A. P. Chugainova
%A S. V. Gorkunov
%A S. I. Sumskoi
%T Flow structure behind a~shock wave in a~channel with periodically arranged obstacles
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 216-228
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a17/
%G ru
%F TM_2018_300_a17
V. A. Shargatov; A. P. Chugainova; S. V. Gorkunov; S. I. Sumskoi. Flow structure behind a~shock wave in a~channel with periodically arranged obstacles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 216-228. http://geodesic.mathdoc.fr/item/TM_2018_300_a17/

[1] Abe A., Takayama K., Itoh K., “Experimental and numerical study of shock wave propagation over cylinders and spheres”, Computational methods and experimental measurements X, WIT Trans. Modell. Simul., 30, WIT Press, Southampton, 2001, 209–218

[2] Berger S., Sadot O., Ben-Dor G., “Experimental investigation on the shock-wave load attenuation by geometrical means”, Shock Waves, 20:1 (2010), 29–40 | DOI

[3] Berger S., Sadot O., Ben-Dor G., “Numerical investigation of shock-wave load attenuation by barriers”, 28th Int. Symp. on Shock Waves, v. 1, ed. K. Kontis, Springer, Heidelberg, 2012, 111–116 | DOI | MR

[4] Britan A., Igra O., Ben-Dor G., Shapiro H., “Shock wave attenuation by grids and orifice plates”, Shock Waves, 16:1 (2006), 1–15 | DOI

[5] Britan A., Karpov A. V., Vasilev E. I., Igra O., Ben-Dor G., Shapiro E., “Experimental and numerical study of shock wave interaction with perforated plates”, ASME J. Fluids Eng., 126:3 (2004), 399–409 | DOI

[6] Chaudhuri A., Hadjadj A., Sadot O., Ben-Dor G., “Study of shock-wave mitigation through solid obstacles”, 28th Int. Symp. on Shock Waves, v. 2, ed. K. Kontis, Springer, Heidelberg, 2012, 493–498 | DOI

[7] A. P. Chugainova, “Special discontinuities in nonlinearly elastic media”, Comput. Math. Math. Phys., 57 (2017), 1013–1021 | DOI | DOI | MR

[8] Chugainova A. P., Il'ichev A. T., Kulikovskii A. G., Shargatov V. A., “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: selection conditions for a unique solution”, IMA J. Appl. Math., 82:3 (2017), 496–525 | MR

[9] A. P. Chugainova, V. A. Shargatov, “Stability of nonstationary solutions of the generalized KdV–Burgers equation”, Comput. Math. Math. Phys., 55 (2015), 251–263 | DOI | DOI | MR

[10] A. P. Chugainova, V. A. Shargatov, “Stability of discontinuity structures described by a generalized KdV–Burgers equation”, Comput. Math. Math. Phys., 56 (2016), 263–277 | DOI | DOI | MR | Zbl

[11] El G. A., Hoefer M. A., Shearer M., “Dispersive and diffusive–dispersive shock waves for nonconvex conservation laws”, SIAM Rev., 59:1 (2016), 3–61 | MR

[12] Frolov S. M., “Effectiveness of attenuating shock waves in channels by various methods”, J. Appl. Mech. Tech. Phys., 34:1 (1993), 31–36 | DOI

[13] Frolov S. M., Gelfand B. E., “Shock wave attenuation in partially confined channels”, Shock Waves, 2:2 (1992), 97–101 | DOI

[14] Frolov S. M., Gelfand B. E., Medvedev S. P., Tsyganov S. A., “Quenching of shock waves by barriers and screens”, Current topics in shock waves, 17th Int. Symp. on Shock Waves and Shock Tubes, AIP Conf. Proc., 208, ed. Y. W. Kim, Amer. Inst. Phys., New York, 1989, 314–320 | DOI

[15] B. E. Gel'fand, S. M. Frolov, S. P. Medvedev, “Measurement and computation of shock wave attenuation in a rough pipe”, Combust. Explos. Shock Waves, 26:3 (1990), 335–338 | DOI

[16] Gongora-Orozco N., Zare-Behtash H., Kontis K., “Experimental studies on shock wave propagating through junction with grooves”, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Amer. Inst. Aeronaut. Astronaut., Reston, VA, 2009, Pap. AIAA 2009-327

[17] Heilig W., Igra O., “Shock waves in channels”, Handbook of shock waves, v. 2, Ch. 10, eds. G. Ben-Dor, O. Igra, T. Elperin, Acad. Press, San Diego, 2001, 319–396 | DOI

[18] Igra D., Igra O., “Attenuating shock waves by barrier having different orientations: A numerical investigation”, 29th Int. Symp. on Shock Waves, v. 2, eds. R. Bonazza, D. Ranjan, Springer, Cham, 2015, 1273–1278 | DOI

[19] Igra O., Falcovitz J., Houas L., Jourdan G., “Review of methods to attenuate shock/blast waves”, Prog. Aerosp. Sci., 58 (2013), 1–35 | DOI

[20] A. T. Il'ichev, “Stability of solitary waves in membrane tubes: A weakly nonlinear analysis”, Theor. Math. Phys., 193 (2017), 1593–1601 | DOI | DOI | MR

[21] A. T. Il'ichev, A. P. Chugainova, V. A. Shargatov, “Spectral stability of special discontinuities”, Dokl. Math., 91:3 (2015), 347–351 | DOI | MR | Zbl

[22] Kolgan V. P., “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, J. Comput. Phys., 230:7 (2011), 2384–2390 | DOI | MR

[23] A. G. Kulikovskii, A. P. Chugainova, V. A. Shargatov, “Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity”, Comput. Math. Math. Phys., 56 (2016), 1355–1362 | DOI | DOI | MR

[24] LeFloch P. G., Hyperbolic systems of conservation laws: The theory of classical and nonclassical shock waves, Lect. Math. ETH Zürich, Birkhäuser, Basel, 2002 | MR

[25] Yu. N. Ryabinin, V. N. Rodionov, “Attenuation of shock waves propagating in channels”, Physics of Explosions, 3, Akad. Nauk SSSR, Moscow, 1955, 33–58 (in Russian)

[26] Sadot O., Ben-Dor G., Hadjadj A., “Experimental and numerical investigations of shock waves attenuation over obstacles”, Proc. 27th Int. Symp. on Shock Waves (St. Petersburg, 2009), Int. Shock Wave Inst., 2011, 327

[27] Sasoh A., Matsuoka K., Nakashio K., Timofeev E., Takayama K., Voinovich P., Saito T., Hirano S., Ono S., Makino Y., “Attenuation of weak shock waves along pseudo-perforated walls”, Shock Waves, 8:3 (1998), 149–159 | DOI

[28] Sha S., Chen Z., Jiang X., “Influences of obstacle geometries on shock wave attenuation”, Shock Waves, 24:6 (2014), 573–582 | DOI

[29] Skews B., “Shock wave interaction with porous plates”, Exp. Fluids, 39:5 (2005), 875–884 | DOI

[30] Szumowski A. P., “Attenuation of a shock wave along a perforated tube”, Shock tube research, Proc. 8th Int. Shock Tube Symp. (London, 1971), eds. J. L. Stollery, A. G. Gaydon, P. R. Owen, Chapman Hall, London, 1971, Pap. 14

[31] Wang C., Ding J., Tan S., Han W., “High order numerical simulation of detonation wave propagation through complex obstacles with the inverse Lax–Wendroff treatment”, Commun. Comput. Phys., 18:5 (2015), 1264–1281 | DOI | MR

[32] Wu J. H. T., Ostrowski P. P., “Shock attenuation in a perforated duct”, Shock tube research, Proc. 8th Int. Shock Tube Symp. (London, 1971), eds. J. L. Stollery, A. G. Gaydon, P. R. Owen, Chapman Hall, London, 1971, Pap. 15