Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 146-157

Voir la notice de l'article provenant de la source Math-Net.Ru

A Couette flow of a viscoelastic medium is considered that is described by the Johnson–Segalman–Oldroyd model with two relaxation times. The development of singularities related to the appearance of internal discontinuities is studied both analytically and numerically within one-dimensional nonstationary hyperbolic models of viscoelastic Maxwell-type media. A numerical model for calculating nonstationary one-dimensional discontinuous solutions is constructed, discontinuous solutions are studied, and the hysteresis phenomenon, i.e., the dependence of the structure of a steady Couette flow on the prehistory of its formation, is analyzed.
@article{TM_2018_300_a10,
     author = {V. Yu. Liapidevskii},
     title = {Couette flow of a~viscoelastic {Maxwell-type} medium with two relaxation times},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {146--157},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a10/}
}
TY  - JOUR
AU  - V. Yu. Liapidevskii
TI  - Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 146
EP  - 157
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a10/
LA  - ru
ID  - TM_2018_300_a10
ER  - 
%0 Journal Article
%A V. Yu. Liapidevskii
%T Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 146-157
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a10/
%G ru
%F TM_2018_300_a10
V. Yu. Liapidevskii. Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 146-157. http://geodesic.mathdoc.fr/item/TM_2018_300_a10/