Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_300_a10, author = {V. Yu. Liapidevskii}, title = {Couette flow of a~viscoelastic {Maxwell-type} medium with two relaxation times}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {146--157}, publisher = {mathdoc}, volume = {300}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a10/} }
TY - JOUR AU - V. Yu. Liapidevskii TI - Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 146 EP - 157 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_300_a10/ LA - ru ID - TM_2018_300_a10 ER -
V. Yu. Liapidevskii. Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 146-157. http://geodesic.mathdoc.fr/item/TM_2018_300_a10/
[1] Agassant J.-F., Covas J. A., “An overview of polymer processing modelling”, Advances in Material Forming: Esaform 10 years on, eds. F. Chinesta, E. Cueto, Springer, Paris, 2007, 37–59 | DOI
[2] Yu. A. Andrienko, M. A. Brutyan, I. F. Obraztsov, Yu. G. Yanovskii, “The spurt effect in the four-constant Oldroyd model of viscoelastic fluids”, Phys. Dokl., 42:1 (1997), 43–46 | MR
[3] Basombrio F. G., “Shocks in shear flows of the Johnson–Segalman type”, J. Non-Newtonian Fluid Mech., 49:1 (1993), 1–11 | DOI | MR
[4] M. A. Brutyan, P. L. Krapivskii, “Hydrodynamics of non-Newtonian fluids”, Complex and Special Branches of Mechanics, Itogi Nauki Tekh., 4, VINITI, Moscow, 1991, 3–98
[5] M. A. Brutyan, A. G. Kulikovskii, “Instability and nonuniqueness of quasisteady flows of a viscoelastic liquid”, Fluid Dyn., 31 (1996), 819–827 | DOI | MR
[6] Catheline S., Gennisson J.-L., Tanter M., Fink M., “Observation of shock transverse waves in elastic media”, Phys. Rev. Lett., 91:16 (2003), 164301 | DOI
[7] Denn M. M., “Extrusion instabilities and wall slip”, Annu. Rev. Fluid Mech., 33 (2001), 265–287 | DOI
[8] Fyrillas M. M., Georgiou G. C., Vlassopoulos D., “Time-dependent plane Poiseuille flow of a Johnson–Segalman fluid”, J. Non-Newtonian Fluid Mech., 82:1 (1999), 105–123 | DOI
[9] S. L. Gavrilyuk, “Problem of the decay of an arbitrary discontinuity for a Van der Waals gas”, Dynamics of a Fluid with Free Boundaries, Dinamika Sploshnoi Sredy, 69, Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR, Novosibisrk, 1985, 36–54
[10] Guillopé C., Saut J.-C., “Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type”, Math. Model. Numer. Anal., 24:3 (1990), 369–401 | DOI | MR
[11] Hunter J. K., Slemrod M., “Viscoelastic fluid flow exhibiting hysteritic phase changes”, Phys. Fluids, 26:9 (1983), 2345–2351 | DOI
[12] Johnson M. W. (Jr.), Segalman D., “A model for viscoelastic fluid behavior which allows non-affine deformation”, J. Non-Newtonian Fluid Mech., 2:3 (1977), 255–270 | DOI
[13] Kolkka R. W., Malkus D. S., Hansen M. G., Ierley G. R., “Spurt phenomena of the Johnson–Segalman fluid and related models”, J. Non-Newtonian Fluid Mech., 29 (1988), 303–335 | DOI
[14] V. Yu. Liapidevskii, V. V. Pukhnachev, “Hyperbolic submodels of an incompressible viscoelastic Maxwell medium”, Proc. Steklov Inst. Math., 281 (2013), 77–90 | DOI | DOI | MR
[15] Liapidevskii V. Yu., Pukhnachev V. V., Tani A., “Nonlinear waves in incompressible viscoelastic Maxwell medium”, Wave Motion, 48:8 (2011), 727–737 | DOI | MR
[16] V. Yu. Liapidevskii, V. Teshukov, Mathematical Models of Propagation of Long Waves in an Inhomogeneous Fluid, Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000 (in Russian)
[17] Malkus D. S., Nohel J. A., Plohr B. J., “Dynamics of shear flow of a non-Newtonian fluid”, J. Comput. Phys., 87:2 (1990), 464–487 | DOI | MR
[18] Malkus D. S., Nohel J. A., Plohr B. J., “Analysis of new phenomena in shear flow of non-newtonian fluids”, SIAM J. Appl. Math., 51:4 (1991), 899–929 | DOI | MR
[19] Oldroyd J. G., “Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids”, Proc. R. Soc. London A, 245 (1958), 278–297 | DOI | MR
[20] Olmsted P. D., “Perspectives on shear banding in complex fluids”, Rheol. Acta, 47:3 (2008), 283–300 | DOI
[21] Petrie C. J. S., Denn M. M., “Instabilities in polymer processing”, AIChE J., 22:2 (1976), 209–236 | DOI
[22] Renardy Y. Y., “Spurt and instability in a two-layer Johnson–Segalman liquid”, Theor. Comput. Fluid Dyn., 7:6 (1995), 463–475 | DOI
[23] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Am. Math. Soc., Providence, RI, 1983 | MR | MR
[24] I. M. Rutkevich, “Some general properties of the equations of viscoelastic incompressible fluid dynamics”, J. Appl. Math. Mech., 33 (1969), 30–39 | DOI | MR
[25] Vinogradov G. V., Malkin A. Ya., Yanovskii Yu. G., Borisenkova E. K., Yarlykov B. V., Berezhnaya G. V., “Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes”, J. Polym. Sci. Part A-2, 10:6 (1972), 1061–1084 | DOI