An approximate functional equation for the primitive of Hardy's function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 118-126

Voir la notice de l'article provenant de la source Math-Net.Ru

A formula of Atkinson type for the primitive of Hardy's function is generalized to the case where the lengths of the two sums involved in that formula vary in wide ranges.
@article{TM_2017_299_a6,
     author = {Matti Jutila},
     title = {An approximate functional equation for the primitive of {Hardy's} function},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {118--126},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a6/}
}
TY  - JOUR
AU  - Matti Jutila
TI  - An approximate functional equation for the primitive of Hardy's function
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 118
EP  - 126
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_299_a6/
LA  - ru
ID  - TM_2017_299_a6
ER  - 
%0 Journal Article
%A Matti Jutila
%T An approximate functional equation for the primitive of Hardy's function
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 118-126
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_299_a6/
%G ru
%F TM_2017_299_a6
Matti Jutila. An approximate functional equation for the primitive of Hardy's function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 118-126. http://geodesic.mathdoc.fr/item/TM_2017_299_a6/