Solution of functional equations related to elliptic functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 105-117
Voir la notice de l'article provenant de la source Math-Net.Ru
Functional equations of the form $f(x+y) g(x-y) = \sum _{j=1}^n \alpha _j(x)\beta _j(y)$ as well as of the form $f_1(x+z) f_2(y+z) f_3(x+y-z) = \sum _{j=1}^{m} \phi _j(x,y) \psi _j(z)$ are solved for unknown entire functions $f,g,\alpha _j,\beta _j: \mathbb{C} \to \mathbb{C} $ and $f_1,f_2,f_3,\psi _j: \mathbb{C} \to \mathbb{C} $, $\phi _j: \mathbb{C} ^2\to \mathbb{C} $ in the cases of $n=3$ and $m=4$.
@article{TM_2017_299_a5,
author = {A. A. Illarionov},
title = {Solution of functional equations related to elliptic functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {105--117},
publisher = {mathdoc},
volume = {299},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a5/}
}
A. A. Illarionov. Solution of functional equations related to elliptic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 105-117. http://geodesic.mathdoc.fr/item/TM_2017_299_a5/