Symmetry and short interval mean-squares
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 62-85

Voir la notice de l'article provenant de la source Math-Net.Ru

The weighted Selberg integral is a discrete mean-square that generalizes the classical Selberg integral of primes to an arithmetic function $f$, whose values in a short interval are suitably attached to a weight function. We give conditions on $f$ and select a particular class of weights in order to investigate non-trivial bounds of weighted Selberg integrals of both $f$ and $f*\mu $. In particular, we discuss the cases of the symmetry integral and the modified Selberg integral, the latter involving the Cesaro weight. We also prove some side results when $f$ is a divisor function.
Keywords: mean square, short interval, symmetry, correlation.
@article{TM_2017_299_a3,
     author = {Giovanni Coppola and Maurizio Laporta},
     title = {Symmetry and short interval mean-squares},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {62--85},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a3/}
}
TY  - JOUR
AU  - Giovanni Coppola
AU  - Maurizio Laporta
TI  - Symmetry and short interval mean-squares
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 62
EP  - 85
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_299_a3/
LA  - ru
ID  - TM_2017_299_a3
ER  - 
%0 Journal Article
%A Giovanni Coppola
%A Maurizio Laporta
%T Symmetry and short interval mean-squares
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 62-85
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_299_a3/
%G ru
%F TM_2017_299_a3
Giovanni Coppola; Maurizio Laporta. Symmetry and short interval mean-squares. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 62-85. http://geodesic.mathdoc.fr/item/TM_2017_299_a3/