Symmetry and short interval mean-squares
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 62-85
Voir la notice de l'article provenant de la source Math-Net.Ru
The weighted Selberg integral is a discrete mean-square that generalizes the classical Selberg integral of primes to an arithmetic function $f$, whose values in a short interval are suitably attached to a weight function. We give conditions on $f$ and select a particular class of weights in order to investigate non-trivial bounds of weighted Selberg integrals of both $f$ and $f*\mu $. In particular, we discuss the cases of the symmetry integral and the modified Selberg integral, the latter involving the Cesaro weight. We also prove some side results when $f$ is a divisor function.
Keywords:
mean square, short interval, symmetry, correlation.
@article{TM_2017_299_a3,
author = {Giovanni Coppola and Maurizio Laporta},
title = {Symmetry and short interval mean-squares},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {62--85},
publisher = {mathdoc},
volume = {299},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a3/}
}
Giovanni Coppola; Maurizio Laporta. Symmetry and short interval mean-squares. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 62-85. http://geodesic.mathdoc.fr/item/TM_2017_299_a3/