On complete rational arithmetic sums of polynomial values
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 56-61

Voir la notice de l'article provenant de la source Math-Net.Ru

New estimates are obtained for complete arithmetic sums of polynomial values (exponential sums, sums of Dirichlet characters, and sums of Bernoulli polynomials) in the case where the derivative of the polynomial in the argument of the sum has no multiple roots modulo primes dividing the period of these arithmetic sums.
@article{TM_2017_299_a2,
     author = {V. N. Chubarikov},
     title = {On complete rational arithmetic sums of polynomial values},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {56--61},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a2/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - On complete rational arithmetic sums of polynomial values
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 56
EP  - 61
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_299_a2/
LA  - ru
ID  - TM_2017_299_a2
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T On complete rational arithmetic sums of polynomial values
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 56-61
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_299_a2/
%G ru
%F TM_2017_299_a2
V. N. Chubarikov. On complete rational arithmetic sums of polynomial values. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 56-61. http://geodesic.mathdoc.fr/item/TM_2017_299_a2/