Simplex--karyon algorithm of multidimensional continued fraction expansion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 283-303

Voir la notice de l'article provenant de la source Math-Net.Ru

A simplex–karyon algorithm for expanding real numbers $\alpha =(\alpha _1,\dots ,\alpha _d)$ in multidimensional continued fractions is considered. The algorithm is based on a $(d+1)$-dimensional superspace $\mathbf S$ with embedded hyperplanes: a karyon hyperplane $\mathbf K$ and a Farey hyperplane $\mathbf F$. The approximation of numbers $\alpha $ by continued fractions is performed on the hyperplane $\mathbf F$, and the degree of approximation is controlled on the hyperplane $\mathbf K$. A local $\wp (r)$-strategy for constructing convergents is chosen, with a free objective function $\wp (r)$ on the hyperplane $\mathbf K$.
Keywords: multidimensional continued fractions, best approximations, Farey sums.
@article{TM_2017_299_a16,
     author = {V. G. Zhuravlev},
     title = {Simplex--karyon algorithm of multidimensional continued fraction expansion},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {283--303},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a16/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Simplex--karyon algorithm of multidimensional continued fraction expansion
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 283
EP  - 303
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_299_a16/
LA  - ru
ID  - TM_2017_299_a16
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Simplex--karyon algorithm of multidimensional continued fraction expansion
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 283-303
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_299_a16/
%G ru
%F TM_2017_299_a16
V. G. Zhuravlev. Simplex--karyon algorithm of multidimensional continued fraction expansion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 283-303. http://geodesic.mathdoc.fr/item/TM_2017_299_a16/