Simplex--karyon algorithm of multidimensional continued fraction expansion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 283-303
Voir la notice de l'article provenant de la source Math-Net.Ru
A simplex–karyon algorithm for expanding real numbers $\alpha =(\alpha _1,\dots ,\alpha _d)$ in multidimensional continued fractions is considered. The algorithm is based on a $(d+1)$-dimensional superspace $\mathbf S$ with embedded hyperplanes: a karyon hyperplane $\mathbf K$ and a Farey hyperplane $\mathbf F$. The approximation of numbers $\alpha $ by continued fractions is performed on the hyperplane $\mathbf F$, and the degree of approximation is controlled on the hyperplane $\mathbf K$. A local $\wp (r)$-strategy for constructing convergents is chosen, with a free objective function $\wp (r)$ on the hyperplane $\mathbf K$.
Keywords:
multidimensional continued fractions, best approximations, Farey sums.
@article{TM_2017_299_a16,
author = {V. G. Zhuravlev},
title = {Simplex--karyon algorithm of multidimensional continued fraction expansion},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {283--303},
publisher = {mathdoc},
volume = {299},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a16/}
}
TY - JOUR AU - V. G. Zhuravlev TI - Simplex--karyon algorithm of multidimensional continued fraction expansion JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 283 EP - 303 VL - 299 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_299_a16/ LA - ru ID - TM_2017_299_a16 ER -
V. G. Zhuravlev. Simplex--karyon algorithm of multidimensional continued fraction expansion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 283-303. http://geodesic.mathdoc.fr/item/TM_2017_299_a16/