Sums of values of nonprincipal characters over a sequence of shifted primes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 234-260

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonprincipal character $\chi $ modulo $D$, we prove a nontrivial estimate of the form $\sum _{n\le x}\Lambda (n)\chi (n-l)\ll x\exp \{-0.6\sqrt {\ln D}\}$ for the sum of values of $\chi $ over a sequence of shifted primes in the case when $x\ge D^{1/2+\varepsilon }$, $(l,D)=1$, and the modulus of the primitive character generated by $\chi $ is a cube-free number.
Keywords: Dirichlet character, shifted primes, short character sum, exponential sum over primes.
@article{TM_2017_299_a14,
     author = {Z. Kh. Rakhmonov},
     title = {Sums of values of nonprincipal characters over a sequence of shifted primes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {234--260},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a14/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - Sums of values of nonprincipal characters over a sequence of shifted primes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 234
EP  - 260
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_299_a14/
LA  - ru
ID  - TM_2017_299_a14
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T Sums of values of nonprincipal characters over a sequence of shifted primes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 234-260
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_299_a14/
%G ru
%F TM_2017_299_a14
Z. Kh. Rakhmonov. Sums of values of nonprincipal characters over a sequence of shifted primes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 234-260. http://geodesic.mathdoc.fr/item/TM_2017_299_a14/