Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and its applications, Tome 298 (2017), pp. 127-138

Voir la notice de l'article provenant de la source Math-Net.Ru

For a closed oriented surface $\Sigma $ we define its degenerations into singular surfaces that are locally homeomorphic to wedges of disks. Let $X_{\Sigma ,n}$ be the set of isomorphism classes of orientation-preserving $n$-fold branched coverings $\Sigma \to S^2$ of the two-dimensional sphere. We complete $X_{\Sigma ,n}$ with the isomorphism classes of mappings that cover the sphere by the degenerations of $\Sigma $. In the case $\Sigma =S^2$, the topology that we define on the obtained completion $\overline {X}_{\!\Sigma ,n}$ coincides on $X_{S^2,n}$ with the topology induced by the space of coefficients of rational functions $P/Q$, where $P$ and $Q$ are homogeneous polynomials of degree $n$ on $\mathbb C\mathrm P^1\cong S^2$. We prove that $\overline {X}_{\!\Sigma ,n}$ coincides with the Diaz–Edidin–Natanzon–Turaev compactification of the Hurwitz space $H(\Sigma ,n)\subset X_{\Sigma ,n}$ consisting of isomorphism classes of branched coverings with all critical values being simple.
@article{TM_2017_298_a8,
     author = {V. I. Zvonilov and S. Yu. Orevkov},
     title = {Compactification of the {Space} of {Branched} {Coverings} of the {Two-Dimensional} {Sphere}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_298_a8/}
}
TY  - JOUR
AU  - V. I. Zvonilov
AU  - S. Yu. Orevkov
TI  - Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 127
EP  - 138
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_298_a8/
LA  - ru
ID  - TM_2017_298_a8
ER  - 
%0 Journal Article
%A V. I. Zvonilov
%A S. Yu. Orevkov
%T Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 127-138
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_298_a8/
%G ru
%F TM_2017_298_a8
V. I. Zvonilov; S. Yu. Orevkov. Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and its applications, Tome 298 (2017), pp. 127-138. http://geodesic.mathdoc.fr/item/TM_2017_298_a8/