On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and its applications, Tome 298 (2017), pp. 75-100

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary properties of functions representable as limit-periodic continued fractions of the form $A_1(z)/(B_1(z)+A_2(z)/(B_2(z)+\dots ))$ are studied; here the sequence of polynomials $\{A_n\}_{n=1}^\infty $ has periodic limits with zeros lying on a finite set $E$, and the sequence of polynomials $\{B_n\}_{n=1}^\infty $ has periodic limits with zeros lying outside $E$. It is shown that the transfinite diameter of the boundary of the convergence domain of such a continued fraction in the external field associated with the fraction coincides with the upper limit of the averaged generalized Hankel determinants of the function defined by the fraction. As a consequence of this result combined with the generalized Pólya theorem, it is shown that the functions defined by the continued fractions under consideration do not have a single-valued meromorphic continuation to any neighborhood of any nonisolated point of the boundary of the convergence set.
Keywords: continued fractions, Hankel determinants, transfinite diameter, meromorphic continuation.
@article{TM_2017_298_a5,
     author = {V. I. Buslaev},
     title = {On the {Van} {Vleck} {Theorem} for {Limit-Periodic} {Continued} {Fractions} of {General} {Form}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {75--100},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_298_a5/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 75
EP  - 100
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_298_a5/
LA  - ru
ID  - TM_2017_298_a5
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 75-100
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_298_a5/
%G ru
%F TM_2017_298_a5
V. I. Buslaev. On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and its applications, Tome 298 (2017), pp. 75-100. http://geodesic.mathdoc.fr/item/TM_2017_298_a5/