On the Analytic Complexity of Hypergeometric Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and its applications, Tome 298 (2017), pp. 267-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hypergeometric functions of several variables resemble functions of finite analytic complexity in the sense that the elements of both classes satisfy certain canonical overdetermined systems of partial differential equations. Otherwise these two sets of functions are very different. We investigate the relation between the two classes of functions and compute the analytic complexity of certain bivariate hypergeometric functions.
@article{TM_2017_298_a15,
     author = {T. M. Sadykov},
     title = {On the {Analytic} {Complexity} of {Hypergeometric} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {267--275},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_298_a15/}
}
TY  - JOUR
AU  - T. M. Sadykov
TI  - On the Analytic Complexity of Hypergeometric Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 267
EP  - 275
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_298_a15/
LA  - ru
ID  - TM_2017_298_a15
ER  - 
%0 Journal Article
%A T. M. Sadykov
%T On the Analytic Complexity of Hypergeometric Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 267-275
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_298_a15/
%G ru
%F TM_2017_298_a15
T. M. Sadykov. On the Analytic Complexity of Hypergeometric Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and its applications, Tome 298 (2017), pp. 267-275. http://geodesic.mathdoc.fr/item/TM_2017_298_a15/

[1] Arnold V. I., “O predstavlenii nepreryvnykh funktsii trekh peremennykh superpozitsiyami nepreryvnykh funktsii dvukh peremennykh”, Mat. sb., 48:1 (1959), 3–74 | Zbl

[2] Beloshapka V. K., “Analytic complexity of functions of two variables”, Russ. J. Math. Phys., 14:3 (2007), 243–249 | DOI | MR | Zbl

[3] Beloshapka V. K., “Analytical complexity: Development of the topic”, Russ. J. Math. Phys., 19:4 (2012), 428–439 | DOI | MR | Zbl

[4] Beloshapka V. K., “Analiticheskaya slozhnost funktsii mnogikh peremennykh”, Mat. zametki, 100:6 (2016), 781–789 | DOI | Zbl

[5] Beloshapka V. K., “Algebraic functions of complexity one, a Weierstrass theorem, and three arithmetic operations”, Russ. J. Math. Phys., 23:3 (2016), 343–347 | DOI | MR | Zbl

[6] Beloshapka V. K., “Three families of functions of complexity one”, Zhurn. SFU. Matematika i fizika, 9:4 (2016), 416–426 | MR

[7] Dickenstein A., Matusevich L. F., Miller E., “Binomial D-modules”, Duke Math. J., 151:3 (2010), 385–429 | DOI | MR | Zbl

[8] Dikenshtein A., Sadykov T. M., “Algebraichnost reshenii sistemy uravnenii Mellina i ee monodromiya”, DAN, 412:4 (2007), 448–450 | MR

[9] Dikenshtein A., Sadykov T. M., “Bazisy v prostranstve reshenii sistemy uravnenii Mellina”, Mat. sb., 198:9 (2007), 59–80 | DOI | MR

[10] Gelfand I. M., Graev M. I., Retakh V. S., “Obschie gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, UMN, 47:4 (1992), 3–82 | MR | Zbl

[11] Kalmykov M. Yu., Kniehl B. A., “Mellin–Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions”, Phys. Lett. B, 714:1 (2012), 103–109 | DOI | MR

[12] Krasikov V. A., Sadykov T. M., “Ob analiticheskoi slozhnosti diskriminantov”, Tr. MIAN, 279, 2012, 86–101 | Zbl

[13] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967 | MR

[14] Sadykov T. M., “O mnogomernoi sisteme differentsialnykh gipergeometricheskikh uravnenii”, Sib. mat. zhurn., 39:5 (1998), 1141–1153 | MR | Zbl

[15] Sadykov T. M., “On the Horn system of partial differential equations and series of hypergeometric type”, Math. Scand., 91:1 (2002), 127–149 | DOI | MR | Zbl

[16] Sadykov T., “The Hadamard product of hypergeometric series”, Bull. sci. math., 126:1 (2002), 31–43 | DOI | MR | Zbl

[17] Sadykov T. M., “Gipergeometricheskie sistemy uravnenii s maksimalno privodimoi monodromiei”, DAN, 423:4 (2008), 455–457 | MR | Zbl

[18] Sadykov T. M., Tanabe S., “Maksimalno privodimaya monodromiya dvumernykh gipergeometricheskikh sistem”, Izv. RAN. Ser. mat., 80:1 (2016), 235–280 | DOI | MR | Zbl

[19] Sato M., Shintani T., Muro M., “Theory of prehomogeneous vector spaces (algebraic part)”, Nagoya Math. J., 120 (1990), 1–34 | DOI | MR | Zbl