On the structure of the ambient manifold for Morse--Smale systems without heteroclinic intersections
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 201-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a closed smooth orientable manifold $M^n$, $n\geq3$, admits a Morse–Smale system without heteroclinic intersections (the absence of periodic trajectories is additionally required in the case of a Morse–Smale flow), then this manifold is homeomorphic to the connected sum of manifolds whose structure is interconnected with the type and number of points that belong to the non-wandering set of the Morse–Smale system.
@article{TM_2017_297_a9,
     author = {V. Z. Grines and E. V. Zhuzhoma and V. S. Medvedev},
     title = {On the structure of the ambient manifold for {Morse--Smale} systems without heteroclinic intersections},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {201--210},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a9/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - On the structure of the ambient manifold for Morse--Smale systems without heteroclinic intersections
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 201
EP  - 210
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_297_a9/
LA  - ru
ID  - TM_2017_297_a9
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T On the structure of the ambient manifold for Morse--Smale systems without heteroclinic intersections
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 201-210
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_297_a9/
%G ru
%F TM_2017_297_a9
V. Z. Grines; E. V. Zhuzhoma; V. S. Medvedev. On the structure of the ambient manifold for Morse--Smale systems without heteroclinic intersections. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 201-210. http://geodesic.mathdoc.fr/item/TM_2017_297_a9/

[1] Adams J. F., “On the non-existence of elements of Hopf invariant one”, Ann. Math. Ser. 2, 72:1 (1960), 20–104 | DOI | MR | Zbl

[2] Anosov D. V., “Grubost geodezicheskikh potokov na kompaktnykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, DAN, 145:4 (1962), 707–709 | Zbl

[3] Anosov D. V., “Ergodicheskie svoistva geodezicheskikh potokov na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, DAN, 151:6 (1963), 1250–1252 | Zbl

[4] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR | Zbl

[5] Anosov D. V., “Gladkie dinamicheskie sistemy. Gl. 1: Iskhodnye ponyatiya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 156–178

[6] Anosov D. V., Differentsialnye uravneniya: to reshaem, to risuem, MTsNMO, M., 2010

[7] Bonatti C., Grines V., Medvedev V., Pécou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl

[8] Daverman R. J., Venema G. A., Embeddings in manifolds, Grad. Stud. Math., 106, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[9] Franks J., “Anosov diffeomorphisms”, Global analysis, Proc. Symp. Pure Math. (Univ Calif., 1968), Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 61–93 | DOI | MR

[10] Freedman M. H., “The topology of four-dimensional manifolds”, J. Diff. Geom., 17 (1982), 357–453 | DOI | MR | Zbl

[11] Grines V. Z., Gurevich E. Ya., Medvedev V. C., “Graf Peikshoto diffeomorfizmov Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei trekh”, Tr. MIAN, 261, 2008, 61–86 | MR | Zbl

[12] Grines V. Z., Gurevich E. Ya., Pochinka O. V., “Topological classification of Morse–Smale diffeomorphisms without heteroclinic intersections”, J. Math. Sci., 208:1 (2015), 81–90 | DOI | MR | Zbl

[13] Grines V. Z., Medvedev T. V., Pochinka O. V., Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016 | MR | Zbl

[14] Grines V., Medvedev T., Pochinka O., Zhuzhoma E., “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Physica D, 294 (2015), 1–5 | DOI | MR | Zbl

[15] Grines V. Z., Pochinka O. V., Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, In-t kompyut. issled., M.–Izhevsk, 2011

[16] Grines V. Z., Zhuzhoma E. V., Medvedev V. C., Pochinka O. V., “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Tr. MIAN, 271, 2010, 111–133 | MR | Zbl

[17] Hirsch M. W., Differential topology, Grad. Texts Math., 33, Springer, New York, 1976 ; Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | DOI | MR | Zbl | MR

[18] Keldysh L. V., Topologicheskie vlozheniya v evklidovo prostranstvo, Tr. MIAN, 81, Nauka, M., 1966 | MR | Zbl

[19] Margulis G. A., “ ‘U’-potoki na trekhmernykh mnogoobraziyakh”, Prilozhenie k state: Anosov D. V., Sinai Ya. G., “Nekotorye gladkie ergodicheskie sistemy” (UMN, 22:5 (1967), 107–172), UMN, 22:5 (1967), 169–170

[20] Medvedev V. C., Umanskii Ya. L., “O razlozhenii $n$-mernykh mnogoobrazii na prostye mnogoobraziya”, Izv. vuzov. Matematika, 1979, no. 1, 46–50 | MR | Zbl

[21] Medvedev V. S., Zhuzhoma E. V., “Locally flat and wildly embedded separatrices in simplest Morse–Smale systems”, J. Dyn. Control Syst., 18:3 (2012), 433–448 | DOI | MR | Zbl

[22] Medvedev V. S., Zhuzhoma E. V., “Morse–Smale systems with few non-wandering points”, Topology Appl., 160:3 (2013), 498–507 | DOI | MR | Zbl

[23] Newhouse S. E., “On codimension one Anosov diffeomorphisms”, Amer. J. Math., 92:3 (1970), 761–770 ; Nyukhaus Sh. E., “Ob U-diffeomorfizmakh korazmernosti odin”, Gladkie dinamicheskie sistemy, Mir, M., 1977, 87–98 | DOI | MR | Zbl | MR

[24] Newman M. H. A., “The engulfing theorem for topological manifolds”, Ann. Math. Ser. 2, 84 (1966), 555–571 | DOI | MR | Zbl

[25] Novikov S. P., Topologiya, In-t kompyut. issled., M.–Izhevsk, 2002

[26] Perelman G., Ricci flow with surgery on three-manifolds, E-print, 2003, arXiv: math/0303109[math.DG]

[27] Perelman G., Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, E-print, 2003, arXiv: math/0307245[math.DG]

[28] Plante J. F., Thurston W. P., “Anosov flows and the fundamental group”, Topology, 11 (1972), 147–150 | DOI | MR | Zbl

[29] Smale S., “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[30] Smale S., “Generalized Poincaré's conjecture in dimensions greater than four”, Ann. Math. Ser. 2, 74 (1961), 391–406 | DOI | MR | Zbl

[31] Zhuzhoma E. V., Medvedev V. C., “Globalnaya dinamika sistem Morsa–Smeila”, Tr. MIAN, 261, 2008, 115–139 | MR | Zbl

[32] Zhuzhoma E. V., Medvedev V. C., “Sistemy Morsa–Smeila s tremya nebluzhdayuschimi tochkami”, DAN, 440:1 (2011), 11–14 | Zbl