Realization of Morse--Smale diffeomorphisms on $3$-manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 46-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a realization of an orientation-preserving Morse–Smale $3$-diffeomorphism in each class of the topological conjugacy by means of an abstract scheme.
@article{TM_2017_297_a2,
     author = {Ch. Bonatti and V. Z. Grines and O. V. Pochinka},
     title = {Realization of {Morse--Smale} diffeomorphisms on $3$-manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {46--61},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a2/}
}
TY  - JOUR
AU  - Ch. Bonatti
AU  - V. Z. Grines
AU  - O. V. Pochinka
TI  - Realization of Morse--Smale diffeomorphisms on $3$-manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 46
EP  - 61
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_297_a2/
LA  - ru
ID  - TM_2017_297_a2
ER  - 
%0 Journal Article
%A Ch. Bonatti
%A V. Z. Grines
%A O. V. Pochinka
%T Realization of Morse--Smale diffeomorphisms on $3$-manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 46-61
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_297_a2/
%G ru
%F TM_2017_297_a2
Ch. Bonatti; V. Z. Grines; O. V. Pochinka. Realization of Morse--Smale diffeomorphisms on $3$-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 46-61. http://geodesic.mathdoc.fr/item/TM_2017_297_a2/

[1] Bonatti C., Grines V., “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl

[2] Bonatti Ch., Grines V., Laudenbach F., Pochinka O., Topological classification of Morse–Smale diffeomorphisms without heteroclinic curves on 3-manifolds, E-print, 2017, arXiv: 1702.04960[math.GT]

[3] Bonatti C., Grines V., Medvedev V., Pécou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl

[4] Bonatti Kh., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | MR | Zbl

[5] Bonatti C., Grines V., Pochinka O., “Classification of Morse–Smale diffeomorphisms with the chain of saddles on 3-manifolds”, Foliations 2005, Proc. Int. Conf. (Łodź, 2005), World Scientific, Hackensack, NJ, 2006, 121–147 | DOI | MR | Zbl

[6] Bonatti C., Langevin R., Difféomorphismes de Smale des surfaces, Astérisque, 250, Soc. math. France, Paris, 1998 | MR

[7] Bonatti C., Paoluzzi L., “3-manifolds which are orbit spaces of diffeomorphisms”, Topology, 47:2 (2008), 71–100 | DOI | MR | Zbl

[8] Fox R. H., Artin E., “Some wild cells and spheres in three-dimensional space”, Ann. Math. Ser. 2, 49:4 (1948), 979–990 | DOI | MR | Zbl

[9] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 54:3 (1993), 3–17 | MR | Zbl

[10] Grines V. Z., Medvedev T. V., Pochinka O. V., Dynamical systems on 2- and 3-manifolds, Springer, Cham, 2016 | MR | Zbl

[11] Grines V. Z., Pochinka O. V., “Kaskady Morsa–Smeila na 3-mnogoobraziyakh”, UMN, 68:1 (2013), 129–188 | DOI | MR | Zbl

[12] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., Pochinka O. V., “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Tr. MIAN, 271, 2010, 111–133 | MR | Zbl

[13] Grines V. Z., Zhuzhoma E. V., Pochinka O. V., “Sistemy Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, Sovr. matematika. Fund. napr., 61, 2016, 5–40 | MR

[14] Kosnevski Ch., Nachalnyi kurs algebraicheskoi topologii, Mir, M., 1983 | MR

[15] Maier A. G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchen. zap. Gork. un-ta, 1939, no. 12, 215–229

[16] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Univ. (Bahia, Salvador, 1971), Acad. Press, New York, 1973, 389–419 | MR

[17] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl