Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2017_297_a2, author = {Ch. Bonatti and V. Z. Grines and O. V. Pochinka}, title = {Realization of {Morse--Smale} diffeomorphisms on $3$-manifolds}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {46--61}, publisher = {mathdoc}, volume = {297}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a2/} }
TY - JOUR AU - Ch. Bonatti AU - V. Z. Grines AU - O. V. Pochinka TI - Realization of Morse--Smale diffeomorphisms on $3$-manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 46 EP - 61 VL - 297 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_297_a2/ LA - ru ID - TM_2017_297_a2 ER -
Ch. Bonatti; V. Z. Grines; O. V. Pochinka. Realization of Morse--Smale diffeomorphisms on $3$-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 46-61. http://geodesic.mathdoc.fr/item/TM_2017_297_a2/
[1] Bonatti C., Grines V., “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl
[2] Bonatti Ch., Grines V., Laudenbach F., Pochinka O., Topological classification of Morse–Smale diffeomorphisms without heteroclinic curves on 3-manifolds, E-print, 2017, arXiv: 1702.04960[math.GT]
[3] Bonatti C., Grines V., Medvedev V., Pécou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl
[4] Bonatti Kh., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | MR | Zbl
[5] Bonatti C., Grines V., Pochinka O., “Classification of Morse–Smale diffeomorphisms with the chain of saddles on 3-manifolds”, Foliations 2005, Proc. Int. Conf. (Łodź, 2005), World Scientific, Hackensack, NJ, 2006, 121–147 | DOI | MR | Zbl
[6] Bonatti C., Langevin R., Difféomorphismes de Smale des surfaces, Astérisque, 250, Soc. math. France, Paris, 1998 | MR
[7] Bonatti C., Paoluzzi L., “3-manifolds which are orbit spaces of diffeomorphisms”, Topology, 47:2 (2008), 71–100 | DOI | MR | Zbl
[8] Fox R. H., Artin E., “Some wild cells and spheres in three-dimensional space”, Ann. Math. Ser. 2, 49:4 (1948), 979–990 | DOI | MR | Zbl
[9] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 54:3 (1993), 3–17 | MR | Zbl
[10] Grines V. Z., Medvedev T. V., Pochinka O. V., Dynamical systems on 2- and 3-manifolds, Springer, Cham, 2016 | MR | Zbl
[11] Grines V. Z., Pochinka O. V., “Kaskady Morsa–Smeila na 3-mnogoobraziyakh”, UMN, 68:1 (2013), 129–188 | DOI | MR | Zbl
[12] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., Pochinka O. V., “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Tr. MIAN, 271, 2010, 111–133 | MR | Zbl
[13] Grines V. Z., Zhuzhoma E. V., Pochinka O. V., “Sistemy Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, Sovr. matematika. Fund. napr., 61, 2016, 5–40 | MR
[14] Kosnevski Ch., Nachalnyi kurs algebraicheskoi topologii, Mir, M., 1983 | MR
[15] Maier A. G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchen. zap. Gork. un-ta, 1939, no. 12, 215–229
[16] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Univ. (Bahia, Salvador, 1971), Acad. Press, New York, 1973, 389–419 | MR
[17] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl