On the Riemann–Hilbert problem for difference and $q$-difference systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 326-343
Cet article a éte moissonné depuis la source Math-Net.Ru
We study an analog of the classical Riemann–Hilbert problem stated for the classes of difference and $q$-difference systems. We generalize Birkhoff's existence theorem.
@article{TM_2017_297_a17,
author = {I. V. Vyugin and R. I. Levin},
title = {On the {Riemann{\textendash}Hilbert} problem for difference and $q$-difference systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {326--343},
year = {2017},
volume = {297},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a17/}
}
TY - JOUR AU - I. V. Vyugin AU - R. I. Levin TI - On the Riemann–Hilbert problem for difference and $q$-difference systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 326 EP - 343 VL - 297 UR - http://geodesic.mathdoc.fr/item/TM_2017_297_a17/ LA - ru ID - TM_2017_297_a17 ER -
I. V. Vyugin; R. I. Levin. On the Riemann–Hilbert problem for difference and $q$-difference systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 326-343. http://geodesic.mathdoc.fr/item/TM_2017_297_a17/
[1] Anosov D. V., Bolibruch A. A., The Riemann–Hilbert problem: A publication from the Steklov Institute of Mathematics, Aspects Math., E22, Vieweg, Braunschweig, 1994 | DOI | MR | Zbl
[2] Birkhoff G. D., “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12:2 (1911), 243–284 | DOI | MR | Zbl
[3] Birkhoff G. D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. Arts Sci., 49:9 (1913), 521–568 | DOI | Zbl