Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2017_297_a14, author = {Mark Pollicott}, title = {A note on the shrinking sector problem for surfaces of variable negative curvature}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {281--291}, publisher = {mathdoc}, volume = {297}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a14/} }
TY - JOUR AU - Mark Pollicott TI - A note on the shrinking sector problem for surfaces of variable negative curvature JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 281 EP - 291 VL - 297 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_297_a14/ LA - ru ID - TM_2017_297_a14 ER -
Mark Pollicott. A note on the shrinking sector problem for surfaces of variable negative curvature. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 281-291. http://geodesic.mathdoc.fr/item/TM_2017_297_a14/
[1] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR | Zbl
[2] Babillot M., “On the mixing property for hyperbolic systems”, Isr. J. Math., 129 (2002), 61–76 | DOI | MR | Zbl
[3] Bowen R., Ruelle D., “The ergodic theory of Axiom A flows”, Invent. math., 29:3 (1975), 181–202 | DOI | MR | Zbl
[4] Haydn N. T. A., Ruelle D., “Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification”, Commun. Math. Phys., 148:1 (1992), 155–167 | DOI | MR | Zbl
[5] Hirsch M. W., Pugh C. C., “Stable manifolds and hyperbolic sets”, Global analysis, Proc. Symp. Pure Math. (Berkeley, CA, 1968), Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 133–163 | DOI | MR
[6] Huber H., “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen”, Math. Ann., 138 (1959), 1–26 | DOI | MR | Zbl
[7] Margulis G. A., “O nekotorykh primeneniyakh ergodicheskoi teorii k izucheniyu mnogoobrazii otritsatelnoi krivizny”, Funkts. analiz i ego pril., 3:4 (1969), 89–90 | MR | Zbl
[8] Marklof J., Vinogradov I., “Directions in hyperbolic lattices”, J. reine angew. Math., 2015 | DOI
[9] Nicholls P., “A lattice point problem in hyperbolic space”, Mich. Math. J., 30:3 (1983), 273–287 | DOI | MR | Zbl
[10] Sharp R., “Sector estimates for Kleinian groups”, Port. Math. (N.S.), 58:4 (2001), 461–471 | MR | Zbl