Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2017_297_a10, author = {B. M. Gurevich and S. A. Komech}, title = {Deformation rate of boundaries in {Anosov} and related systems}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {211--223}, publisher = {mathdoc}, volume = {297}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a10/} }
TY - JOUR AU - B. M. Gurevich AU - S. A. Komech TI - Deformation rate of boundaries in Anosov and related systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 211 EP - 223 VL - 297 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_297_a10/ LA - ru ID - TM_2017_297_a10 ER -
B. M. Gurevich; S. A. Komech. Deformation rate of boundaries in Anosov and related systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 211-223. http://geodesic.mathdoc.fr/item/TM_2017_297_a10/
[1] Abramov L. M., “Ob entropii potoka”, DAN SSSR, 128:5 (1959), 873–875 | Zbl
[2] Blanchard F., Hansel G., “Systèmes codés”, Theor. Comput. Sci., 44 (1986), 17–49 | DOI | MR | Zbl
[3] Bonatti C., Viana M., “SRB measures for partially hyperbolic systems whose central direction is mostly contracting”, Isr. J. Math., 115 (2000), 157–193 | DOI | MR | Zbl
[4] Dorfman J. R., An introduction to chaos in nonequilibrium statistical mechanics, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[5] Fiebig D., “Common closing extensions and finitary regular isomorphism for synchronized systems”, Symbolic dynamics and its applications, Proc. AMS Conf. (New Haven, CT, 1991), Contemp. Math., 135, Amer. Math. Soc., Providence, RI, 1992, 125–138 | DOI | MR
[6] Gurevich B. M., “Geometric interpretation of entropy for random processes”, Sinai's Moscow seminar on dynamical systems, AMS Transl. Ser. 2, 171, Amer. Math. Soc., Providence, RI, 1996, 81–87 | MR | Zbl
[7] Gurevich B., Komech S., “On evolution of small spheres in the phase space of a dynamical system”, ESAIM: Proc., 36 (2012), 68–72 | DOI | MR | Zbl
[8] Gurevich B. M., Komech S. A., “Lyapunov exponents and the boundary deformation rate under the action of hyperbolic dynamical systems”, J. Difference Eqns. Appl., 22:1 (2016), 140–146 | DOI | MR | Zbl
[9] Katok A., “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Publ. math. Inst. Hautes Étud. Sci., 51 (1980), 137–173 | DOI | MR | Zbl
[10] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1995 ; Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl
[11] Komech C. A., “Skorost iskazheniya granitsy v sinkhronizovannykh sistemakh: geometricheskii smysl entropii”, Probl. peredachi inform., 48:1 (2012), 15–25 | Zbl
[12] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR
[13] Ledrappier F., Young L.-S., “The metric entropy of diffeomorphisms. I: Characterization of measures satisfying Pesin's entropy formula”, Ann. Math. Ser. 2, 122:3 (1985), 509–539 | DOI | MR | Zbl
[14] Lind D., Marcus B., An introduction to symbolic dynamics and coding, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[15] Pesin Ya. B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–112 | MR | Zbl
[16] Weiss B., “Subshifts of finite type and sofic systems”, Monatsh. Math., 77 (1973), 462–474 | DOI | MR | Zbl
[17] Yau S.-T., Nadis S., The shape of inner space: String theory and the geometry of the universe's hidden dimensions, Basic Books, New York, 2010 | MR | Zbl
[18] Young L.-S., “What are SRB measures, and which dynamical systems have them?”, J. Stat. Phys., 108:5–6 (2002), 733–754 | DOI | MR | Zbl
[19] Zaslavskii G. M., Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984 | MR