A note on Linnik's approach to the Dirichlet $L$-functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 123-132

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\chi \pmod q$, $q>1$, be a primitive Dirichlet character. We first present a detailed account of Linnik's deduction of the functional equation of $L(s,\chi )$ from the functional equation of $\zeta (s)$. Then we show that the opposite deduction can be obtained by a suitable modification of the method, involving finer arithmetic arguments.
@article{TM_2017_296_a8,
     author = {J. Kaczorowski and A. Perelli},
     title = {A note on {Linnik's} approach to the {Dirichlet} $L$-functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {123--132},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a8/}
}
TY  - JOUR
AU  - J. Kaczorowski
AU  - A. Perelli
TI  - A note on Linnik's approach to the Dirichlet $L$-functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 123
EP  - 132
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_296_a8/
LA  - ru
ID  - TM_2017_296_a8
ER  - 
%0 Journal Article
%A J. Kaczorowski
%A A. Perelli
%T A note on Linnik's approach to the Dirichlet $L$-functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 123-132
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_296_a8/
%G ru
%F TM_2017_296_a8
J. Kaczorowski; A. Perelli. A note on Linnik's approach to the Dirichlet $L$-functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 123-132. http://geodesic.mathdoc.fr/item/TM_2017_296_a8/