Hardy's function $Z(t)$: Results and problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 111-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is primarily an overview article on some results and problems involving the classical Hardy function $Z(t) := \zeta (1/2+it)(\chi (1/2+it))^{-1/2}$, $\zeta (s) = \chi (s)\zeta (1-s)$. In particular, we discuss the first and third moments of $Z(t)$ (with and without shifts) and the distribution of its positive and negative values. A new result involving the distribution of its values is presented.
@article{TM_2017_296_a7,
     author = {A. Ivi\'c},
     title = {Hardy's function $Z(t)$: {Results} and problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a7/}
}
TY  - JOUR
AU  - A. Ivić
TI  - Hardy's function $Z(t)$: Results and problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 111
EP  - 122
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_296_a7/
LA  - ru
ID  - TM_2017_296_a7
ER  - 
%0 Journal Article
%A A. Ivić
%T Hardy's function $Z(t)$: Results and problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 111-122
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_296_a7/
%G ru
%F TM_2017_296_a7
A. Ivić. Hardy's function $Z(t)$: Results and problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 111-122. http://geodesic.mathdoc.fr/item/TM_2017_296_a7/

[1] Bettin S., Chandee V., Radziwiłł M., “The mean square of the product of the Riemann zeta-function with Dirichlet polynomials”, J. reine angew. Math., 2015 | DOI

[2] Conrey J. B., “More than two fifths of the zeros of the Riemann zeta function are on the critical line”, J. reine angew. Math., 399 (1989), 1–26 | MR | Zbl

[3] Feng S., “Zeros of the Riemann zeta function on the critical line”, J. Number Theory, 132:4 (2012), 511–542 | DOI | MR | Zbl

[4] Ford K., “Vinogradov's integral and bounds for the Riemann zeta-function”, Proc. London Math. Soc. Ser. 3, 85:3 (2002), 565–633 | DOI | MR | Zbl

[5] Hall R. R., “A new unconditional result about large spaces between zeta zeros”, Mathematika, 52 (2005), 101–113 | DOI | MR | Zbl

[6] Hardy G. H., “On the zeros of Riemann's zeta-function (Records of proceedings at meetings)”, Proc. London Math. Soc. Ser. 2, 13 (1914), 29–30 | MR

[7] Harper A. J., Sharp conditional bounds for moments of the Riemann zeta function, E-print, 2013, arXiv: 1305.4618[math.NT]

[8] Ingham A. E., “Mean-value theorems in the theory of the Riemann zeta-function”, Proc. London Math. Soc. Ser. 2, 27 (1928), 273–300 | DOI | MR

[9] Ivić A., The Riemann zeta-function, J. Wiley Sons, New York, 1985 ; Dover, Mineola, NY, 2003 | MR | Zbl | Zbl

[10] Ivić A., Lectures on mean values of the Riemann zeta function, Lect. Math. Phys. Mathematics. Tata Inst. Fundam. Res., 82, Springer, Berlin, 1991 | MR | Zbl

[11] Ivić A., “On sums of gaps between the zeros of $\zeta (s)$ on the critical line”, Publ. Elektroteh. Fak. Univ. Beograd. Ser. Mat., 6 (1995), 55–62 | MR | Zbl

[12] Ivić A., “On the integral of Hardy's function”, Arch. Math., 83:1 (2004), 41–47 | DOI | MR | Zbl

[13] Ivić A., “On mean value results for the Riemann zeta-function in short intervals”, Hardy–Ramanujan J., 32 (2009), 4–23 | MR | Zbl

[14] Ivić A., “On some problems involving Hardy's function”, Cent. Eur. J. Math., 8:6 (2010), 1029–1040 | DOI | MR | Zbl

[15] Ivić A., The theory of Hardy's $Z$-function, Cambridge Univ. Press, Cambridge, 2013 | Zbl

[16] Ivić A., “The mean values of the Riemann zeta-function on the critical line”, Analytic number theory, approximation theory, and special functions, eds. G. V. Milovanović, M. Th. Rassias, Springer, New York, 2014, 3–68 | DOI | MR | Zbl

[17] Ivić A., On a cubic moment of Hardy's function with a shift, E-print, 2015, arXiv: 1511.07140[math.NT]

[18] Jutila M., “Atkinson's formula for Hardy's function”, J. Number Theory, 129:11 (2009), 2853–2878 | DOI | MR | Zbl

[19] Jutila M., “An asymptotic formula for the primitive of Hardy's function”, Ark. Mat., 49:1 (2011), 97–107 | DOI | MR | Zbl

[20] Jutila M., “The mean value of Hardy's function in short intervals”, Indag. math. New Ser., 26:5 (2015), 867–882 | DOI | MR | Zbl

[21] Kalpokas J., Steuding J., “On the value-distribution of the Riemann zeta-function on the critical line”, Moscow J. Comb. Number Theory, 1:1 (2011), 26–42 | MR | Zbl

[22] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, W. de Gruyter, Berlin, 1992 | MR | Zbl

[23] Korolëv M. A., “O pervoobraznoi funktsii Khardi $Z(t)$”, Izv. RAN. Ser. mat., 72:3 (2008), 19–68 | DOI | MR | Zbl

[24] Levinson N., “More than one third of zeros of Riemann's zeta-function are on $\sigma=1/2$”, Adv. Math., 13:4 (1974), 383–436 | DOI | MR | Zbl

[25] Montgomery H. L., “The pair correlation of zeros of the zeta function”, Analytic number theory, Proc. Symp. Pure Math., 24, Amer. Math. Soc., Providence, RI, 1973, 181–193 | DOI | MR

[26] Odlyzko A. M., “On the distribution of spacings of zeros of the zeta function”, Math. Comput., 48 (1987), 273–308 | DOI | MR | Zbl

[27] Odlyzko A. M., The $10^{20}$-th zero of the Riemann zeta-function and 175 million of its neighbors, Preprint, , 1992 http://www.dtc.umn.edu/~odlyzko/unpublished/zeta.10to20.1992.pdf

[28] Radziwiłł M., Soundararajan K., “Continuous lower bounds for moments of zeta and $L$-functions”, Mathematika, 59:1 (2013), 119–128 | DOI | MR | Zbl

[29] Ramachandra K., On the mean-value and omega-theorems for the Riemann zeta-function, Lect. Math. Phys. Mathematics. Tata Inst. Fundam. Res., 85, Springer, Berlin, 1995 | MR | Zbl

[30] Selberg A., Collected papers, v. 1, 2, Springer, Berlin, 1989, 1991 | MR | Zbl

[31] Shimomura S., “Fourth moment of the Riemann zeta-function with a shift along the real line”, Tokyo J. Math., 36:2 (2013), 355–377 | DOI | MR | Zbl

[32] Soundararajan K., “Moments of the Riemann zeta function”, Ann. Math. Ser. 2, 170:2 (2009), 981–993 | DOI | MR | Zbl

[33] Titchmarsh E. C., The theory of the Riemann zeta-function, 2nd ed., Clarendon Press, Oxford, 1986 | MR | Zbl

[34] Vinogradov I. M., Izbrannye trudy, Izd-vo AN SSSR, M., 1952 | MR

[35] Vinogradov I. M., “Novaya otsenka funktsii $\zeta(1+it)$”, Izv. AN SSSR. Ser. mat., 22:2 (1958), 161–164 | MR | Zbl

[36] Vinogradov I. M., Selected works, Springer, Berlin, 1985 | MR | Zbl