On the zeros of the Davenport--Heilbronn function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 72-94
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $N_0(T)$ be the number of zeros of the Davenport–Heilbronn function in the interval $[1/2,1/2+iT]$. It is proved that $N_0(T)\gg T(\ln T)^{1/2+1/16-\varepsilon }$, where $\varepsilon $ is an arbitrarily small positive number.
@article{TM_2017_296_a5,
author = {S. A. Gritsenko},
title = {On the zeros of the {Davenport--Heilbronn} function},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {72--94},
publisher = {mathdoc},
volume = {296},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a5/}
}
S. A. Gritsenko. On the zeros of the Davenport--Heilbronn function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 72-94. http://geodesic.mathdoc.fr/item/TM_2017_296_a5/