On the zeros of the Davenport--Heilbronn function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 72-94

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N_0(T)$ be the number of zeros of the Davenport–Heilbronn function in the interval $[1/2,1/2+iT]$. It is proved that $N_0(T)\gg T(\ln T)^{1/2+1/16-\varepsilon }$, where $\varepsilon $ is an arbitrarily small positive number.
@article{TM_2017_296_a5,
     author = {S. A. Gritsenko},
     title = {On the zeros of the {Davenport--Heilbronn} function},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {72--94},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a5/}
}
TY  - JOUR
AU  - S. A. Gritsenko
TI  - On the zeros of the Davenport--Heilbronn function
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 72
EP  - 94
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_296_a5/
LA  - ru
ID  - TM_2017_296_a5
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%T On the zeros of the Davenport--Heilbronn function
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 72-94
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_296_a5/
%G ru
%F TM_2017_296_a5
S. A. Gritsenko. On the zeros of the Davenport--Heilbronn function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 72-94. http://geodesic.mathdoc.fr/item/TM_2017_296_a5/