On an elementary version of I.M. Vinogradov's method
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 47-57
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove estimates for complete rational arithmetic sums of Bernoulli polynomials whose arguments are formed by the fractional parts of values of a polynomial with rational coefficients. The results are applied to the problem of finding the convergence exponent for the mean values of the sums under consideration.
@article{TM_2017_296_a3,
author = {V. N. Chubarikov},
title = {On an elementary version of {I.M.} {Vinogradov's} method},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {47--57},
publisher = {mathdoc},
volume = {296},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a3/}
}
V. N. Chubarikov. On an elementary version of I.M. Vinogradov's method. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 47-57. http://geodesic.mathdoc.fr/item/TM_2017_296_a3/