On an elementary version of I.M. Vinogradov's method
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 47-57

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove estimates for complete rational arithmetic sums of Bernoulli polynomials whose arguments are formed by the fractional parts of values of a polynomial with rational coefficients. The results are applied to the problem of finding the convergence exponent for the mean values of the sums under consideration.
@article{TM_2017_296_a3,
     author = {V. N. Chubarikov},
     title = {On an elementary version of {I.M.} {Vinogradov's} method},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {47--57},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a3/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - On an elementary version of I.M. Vinogradov's method
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 47
EP  - 57
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_296_a3/
LA  - ru
ID  - TM_2017_296_a3
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T On an elementary version of I.M. Vinogradov's method
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 47-57
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_296_a3/
%G ru
%F TM_2017_296_a3
V. N. Chubarikov. On an elementary version of I.M. Vinogradov's method. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 47-57. http://geodesic.mathdoc.fr/item/TM_2017_296_a3/