Additive problem with the coefficients of Hecke $L$-functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 243-251

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is obtained in an additive problem with the coefficients of Hecke $L$-functions. The formula is uniform with respect to the parameters of the problem.
@article{TM_2017_296_a17,
     author = {I. S. Rezvyakova},
     title = {Additive problem with the coefficients of {Hecke} $L$-functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {243--251},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a17/}
}
TY  - JOUR
AU  - I. S. Rezvyakova
TI  - Additive problem with the coefficients of Hecke $L$-functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 243
EP  - 251
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_296_a17/
LA  - ru
ID  - TM_2017_296_a17
ER  - 
%0 Journal Article
%A I. S. Rezvyakova
%T Additive problem with the coefficients of Hecke $L$-functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 243-251
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_296_a17/
%G ru
%F TM_2017_296_a17
I. S. Rezvyakova. Additive problem with the coefficients of Hecke $L$-functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 243-251. http://geodesic.mathdoc.fr/item/TM_2017_296_a17/